M.Sc. Microbiology Course Curriculum

Academic Year: 2024-25 W.E.F. March 2024

GSFC University, Vigyan Bhavan, P. O. Fertilizernagar, Vadodara - 391750, Gujarat, India • GSFCU strives to be the best compact boutique institution with a futuristic approach, encouraging student centric culture and sharpened focus on developing industry ready & employable students with all-round development.

MISSION

- Establish an institution, which promotes creativity and innovation.
- Develop unique quality standards for academic excellence and pedagogical innovations.
- Remain agile through learning ecosystem with flexible processes & systems.
- Holistic growth for industry readiness.

No.	Programme Outcomes (POs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
PO1	To impart knowledge regarding basic concepts of applied biological sciences.	Basic Knowledge	Explain, Describe, Discuss, Recall, Locate
PO2	To explain the relationships between biological sciences, chemical sciences, physical sciences and mathematical sciences.	Interdisciplinary approach	Apply, Practice, Interpret, Select, Correlate
PO3	To perform procedures as per laboratory standards in the areas of Biological Sciences and to think analytically.	Practical learning	Compare, Classify, Select, Investigate
PO4	To communicate effectively in terms of reading, writing, speaking and delivering the view to others.	Effective Communication and social Interaction	Explain, Describe, outline, Predict, Summarize
PO5	To culminate and understand the moral values for any of the subjects with respect to good practices and humanity.	Ethics	Judge, Assess, Estimate, Predict, Argue
PO6	To explain the importance of ecological balance along with conservation of natural resources for human well being.	Environment and Sustainability	Construct, Develop, Produce

No.	Programme Specific Outcomes (PSOs)	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
PSO1	Understanding of biotechnology related research and industrial applications.	Remembering and Understanding	Explain, Describe, Discuss, Recall, Locate
PSO2	Expertise in interpreting complex data related to biotechnology problems and challenges.	Application and Analysing	Apply, Practice, Interpret, Select, Correlate
PSO3	Expertise in knowledge needed to solve current and emerging technologies.	Analysing	Compare, Classify, Select, Investigate
PSO4	Understanding related to questions they need to ask and in – depth research they need to conduct.	Understanding	Explain, Describe, outline, Predict, Summarize
PSO5	Expertise in communicating issues related to industrial biotechnology to a wide audience.	Evaluating	Judge, Assess, Estimate, Predict, Argue
PSO6	Expertise in solving complex social and ethical problems confronting the industry and the government.	Creating	Construct, Develop, Produce

Mapping of POs & PSOs:

	PO1	PO2	PO3	PO4	PO5	PO6
PSO1	2	2	3	3	3	2
PSO2	3	2	2	2	3	3
PSO3	3	3	3	2	2	1
PSO4	3	3	2	2	2	2
PSO5	2	3	2	3	2	2
PSO6	2	2	2	2	3	2
Avg.	2.5	2.5	2.3	2.3	2.5	2

Definition of Credit:

1 Hour Lecture (L) per week	1 credit
1 Hour Tutorial (T) per week	1 credit
2 Hours Practical (P) per week	1 credit
1 Hour Practical (P) per week	0.5 credit
3 Hours Experiential learning	1 credit

Course code Definitions:

Lecture	L
Tutorial	Т
Practical	Р
Basic Science Courses	BSC
Engineering Science Courses	ESC
Humanities and Social Sciences including Management courses	HSMC
Professional core courses /Major (Core)	PCC
Professional Elective courses /Minor Stream	PEC
Open Elective courses	OEC
Laboratory course	LC
Mandatory courses	MC
Non-credit courses	NC
Project (Experiential learning)	PROJ
Experiential learning ex. Internship, Industrial Visit, Field visit, etc,	EL
Multidisciplinary courses	MDC
Ability Enhancement Course	AEC
Skill Enhancement Course	SCE
Value Added Courses	VAC

Structure of Postgraduate Programme:

Sr. No.	Category	Credit Breakup
1	Professional core courses -Major (Core)	48
2	Professional Elective courses relevant to chosen specialization/branch - Minor Stream	6
3	Project work, seminar and internship in industry or elsewhere	26
4	Mandatory Courses [Environmental Sciences, Induction Programme, Indian Constitution, Essence of Indian Knowledge Tradition]	(non-credit)
	Total	80

Table: Minimum Credit Requirement

S.No.	Broad Category of Course	Minimum Credit
		Requirement
		2-year PG
1	Major (Core) (50% of total credit)	48
2	Skill Enhancement Courses (SEC) (from major & Minor)	-
3	Internship and Dissertation	26
	Total	74

Semester- I

Sr.	Course Code	Course Title	L	Τ	Р	С	Mark		
No.							S		
Theory	Theory Courses								
1.	MSMI111	Advanced Biomolecules and Biochemistry	3	0	1	4	150		
2.	MSMI112	Basics of Bioinformatics	3	0	1	4	150		
3.	MSMI113	General Microbiology	3	0	1	4	150		
4.	MSMI114	Molecular Diagnostics	3	0	1	4	150		
5.	MSMI115	Biostatistics	2	0	0	2	100		
6.	MSMI116	Mathematics	2	0	0	2	100		
7.	MSMI117	BioPython	2	0	0	2	100		

8.	MSMI118	Internship	2	0	0	2	50
----	---------	------------	---	---	---	---	----

Semester- II

Sr.No	Course Code	Course Title	L	T	P	C	Mark
							S
Theory Co	ourses						
1.	MSIM211	Advanced cell and Molecular Biology	3	0	1	4	150
2.	MSIM212	Research Methodology & IPR	3	0	1	4	150
3.	MSIM213	Bioprocess Engg. and Technology	3	0	1	4	150
4.	MSIM214	Advance Immunology and Virology	3	0	1	4	150
5.	MSIM215	NanoScience	2	0	0	2	100
6.	MSIM216	Drug Discovery	2	0	0	2	100
7.	MSIM217	Internship	2	0	0	2	50

Semester- III

Sr.No	Course Code	Course Title	L	T	P	C	Mark			
							S			
Theory Co	Theory Courses									
1.	MSIM311	Project proposal preparation	3	0	1	4	150			
2.	MSIM312	Emerging Technology	3	0	1	4	150			
3.	MSIM313	Medical Microbiology	3	0	1	4	150			
4.	MSIM314	Microbial Physiology	3	0	1	4	150			
5.	MSIM315	Environmental Microbiology	2	0	0	2	100			
6.	MSIM316	Agriculture and plant pathogen interaction	2	0	0	2	100			
7.	MSIM317	Internship	2	0	0	2	50			

Semester- IV

Sr.No	Course Code	Course Title	L	T	Р	С	Mark s	
Theory Courses								
1.	MSIM411	Dissertation and Viva			20	20	600	

About the Programme:

Science is the basic foundation of any technological and engineering creation. In view of the changing scenario at the national and international level in the field of Science and Technology, there is a great demand for basic sciences with considerable knowledge of its applications. GSFC University is committed to high academic standards.

The M..Sc. Biotechnology Program is an Honours Degree which is designed for four Semesters in such a way that a good basic foundation of subjects is laid and applications along with recent developments are covered. Students will also get theoretical and practical knowledge by undergoing industrial internship after every semester.

The more focused specialization course of Microbiology is designed to full fill recent demands of industrial career.

COURSE NAME ADVANCED BIOMOLECULES AND BIOCHEMISTRY

SEMESTER I

I

Teaching Scheme (Hours)				Teach Cred			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Pre-requisites	Students should have basic knowledge about advanced				
	biomolecules and biochemistry				
Course Category	Core Professional.				
Course focus	Scientific Temperament & Employability				
Rationale Advanced biomolecules and biochemistry are vital for stud					
	they provide a comprehensive understanding of the molecular basis				
	of life processes, laying the foundation for research and innovation				
	in biotechnology, medicine, and drug discovery, thereby preparing				
	students for careers in academia, industry, and healthcare.				
Course Revision/ Approval 06/03/24					
Date:					
Course Objectives	1. Remember To introduce the field of advanced biomolecules and				
(As per Blooms'	biochemistry.				
Taxonomy)	2. Apply To understand advanced biomolecules and biochemistry.				
• /	3. Analyses Understanding of advanced biomolecules and				
	biochemistry				
	4. Create Understanding of strategies to study advanced				
	biomolecules and biochemistry				
	5. Understand advanced biomolecules and biochemistry				

Course Content (Theory)	Weightage	Contac t hours
Unit 1: Carbohydrate and its metabolism: Structure, classification, function, clinical significance and metabolism.	20%	9
Unit 2: Protein and amino acid and it's metabolism: Structure, classification, function, clinical significance and metabolism.	20%	9
Unit 3: Lipids and it's metabolism: Structure, classification, function, clinical significance and metabolism.	20%	9
Unit 4 : Nucleic acid and it's metabolism: Structure, classification, function, clinical significance and metabolism.	20%	9
Unit 5: Cell membrane: It's integrity, complexity and molecular structure.	20%	9
 Practical: 1.Preparing various stock solutions and working solutions that will be need 2 To determine an unknown protein concentration by plotting a standard g UV-Vis Spectrophotometer and validating the Beer- Lambert's Law. 3 To prepare an Acetic-Na Acetate Buffer and validate the Henderson-Has 4 Titration of Amino Acids and separation of aliphatic, aromatic and polar layer chromatography. 5 Experimental verification that absorption at OD260 is more for denature to native double stranded DNA. 6 Reversal of the same following DNA renaturation. Kinetics of DNA renator of DNA size. 7 Identification of an unknown sample as DNA, RNA or protein using ava (Optional Experiments) 8 Biophysical methods (Circular Dichroism Spectroscopy, Fluorescence S 	graph of BSA sselbeck Equ c amino acids ed DNA as co aturation as a hilable labora	using ation. by thin ompared function tory tools

(Online: Video Tutorials)

Instructional Method and Pedagogy:

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

	Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain			
will be able to CO1 They biochemical pa	ul completion of the above course, students : will be able to recall and describe key athways and processes involved in metabolism, regulation within living organisms.		Explain, Describe, Discuss, Recall,			
compare dif	ill demonstrate the ability to summarize and ferent biochemical processes and their cellular function and organismal physiology.		Interpret, Select,			
CO3 Students research find biochemistry, existing knowl	Evaluation	Compare, Classify, Select,				
CO4Utilizing their knowledge of biomolecules and biochemical principles, students will analyze experimental data and design experiments to investigate biological questions or solve practical problems.CreateCon Design experimental biological						
problem-solvin	vill demonstrate creativity and innovation in ng, synthesizing information to generate new plications in biotechnology, medicine, or other		Explain, Describe, outline, Predict, Summarise			
Learning Res	ources					
 Textbook & Reference Books Berg, J. M., Tymoczko, J. L. and Stryer, L. (2006).Biochemistry. VI Edition. W.H Freeman andCo. 2. Buchanan, B., Gruissem, W. and Jones, R. (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists. Nelson, D.L., Cox, M.M. (2004) Lehninger Principles of Biochemistry, 4th Edition, WH Freeman and Company, New York, US A.L. Lehninger: Biochemistry. 						
2.	Journals & Periodicals 1. JBC 2. Current Science					
3	Other Electronic resources: NPTEL					

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Skill enhancement activities / case study	15 marks			
	Presentation/ miscellaneous activities	10 marks			
	Total	40 Marks			
Practical Marks	Attendance	05 marks			
	Practical Exam	30 marks			
	Viva	10 marks			
	Journal	5 marks			
	Total	50 Marks			

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs and COs

PO	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

CODE	COURSE CODE MSIM112		COURSE NAME SEME BASICS OF BIOINFORMATICS			MESTER I	
	Teaching S	cheme (Hours)			Teaching	Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4
	Course Prerequisites Basic Knowledge of computers						
Course Cate	<u> </u>	Core		· · · · · · · · · · · · · · · · · · ·			
Course focu	S		1	2 Employabili			
Rationale				ur skills in Pyt piological dat			
Course Rev Approval Date:							
 Course Objectives (As per Blooms' Taxonomy) To Remember the basic concepts of python Understand to edit and run Python code To analyze and evaluate file-processing python programs that product output to the terminal and/or external files Apply the knowledge of python to analyse the biological data To Create stand-alone python programs to process biological data 					ta		
Course con		y) Bioinform	attes			Weigh tage	hours
Computers i and basic co Structural da databases an Identification similar seque web; databas	n biology a ommands; 1 atabases; Bi nd search n of proteir ence; NCBI se mining to		Introduction cepts; Protein DTD's; patte cal backgrou om DNA sequilable tools; r	to Unix and and nucleic rn matching a und for sequ uence; search esources at E	l Linux syste acid databas algorithm basi ience analysi ing of databa BI; resources	sens ses; ics; s; 20% ses on	9
Unit 2: Pair wise alignment: Introduction, Dot Plot, Dynamic Programming, K- tuple, Fasta, Blast, Other Tools and Softwares. where and how to submit, SEQUIN, genome centres; submitting aligned sets of sequences, updating						9	
Unit 3: Multiple sequencing alignment: Introduction, Dynamic Programming Progessive, Iterative, Marakov, HMM Methods, CLUSTALW, Other Tools an Softwares flexible sequence similarity searching with the FASTA program package; use of CLUSTALW and CLUSTALX for multiple sequence alignment				and ram	9		

Unit 4: Phylogenic Analysis: Concepts of neutral evolution, molecular divergence and molecular clocks; Molecular tools in phylogeny, classification and identification; Protein and nucleotide sequence analysis; Origin of new genes and proteins; Gene duplication and divergence. Phylogenetic representations, Definition and description, various types of trees; Steps in constructing a tree, Consensus (strict, semi-strict, Adams, majority rule, Nelson). Data partitioning and combination. Tree to tree distances, similarity. Phylogenetic analysis algorithms: Maximum Parsimony, UPGMA, Transformed Distance, Neighbors-Relation, Neighbor-Joining, jackknife, Probabilistic models and associated algorithms such as Probabilistic models of evolution and maximum likelihood algorithm, Bootstrapping methods. Use of HMM-based Algorithm for MSA	20%	9
Unit 5: Data ethics and Database: Data ethics, Introduction to Databases, DBMS Definition, Characteristics of DBMS, Application and advantages of DBMS, Instances, Schemas and Database States, Three Levels of Architecture, Data Independence, DBMS languages, Data Dictionary, Database Users, Data Administrators.	20%	9
Practicals:	1	
 Retrieving sequences from public databases (e.g., NCBI GenBank, UniPre Performing sequence similarity searches using tools like BLAST (Basic L Search Tool). Pairwise sequence alignment (e.g., global alignment, local alignment) usin EMBOSS Needle or BLAST. Multiple sequence alignment (e.g., using ClustalW, MUSCLE) to align m for comparative analysis. 	ocal Alig	uch as

- Identifying open reading frames (ORFs) in nucleotide sequences.
 Predicting protein structure and function from amino acid sequences using tools like InterProScan or Pfam.
- 7. Constructing phylogenetic trees using various methods (e.g., Neighbor-Joining, Maximum Likelihood).

Learning Reso	urces
1.	Textbook & Reference Book
	1. Lesk, A.M. (2002). Introduction to Bioinformatics. Oxford: OxfordUniversityPress.
	2. Mount, D. W.(2001). Bioinformatics: Sequence and Genome Analysis. Cold
	Spring
	3. Harbor, NY: Cold Spring Harbor Laboratory Press.
	4. Baxevanis, A. D., & Ouellette, B. F. (2001). Bioinformatics: a Practical Guide to
	the
	5. Analysis of Genes and Proteins. New York: Wiley-Interscience.
	6. Pevsner, J. (2015). Bioinformatics and Functional Genomics. Hoboken, NJ.:
	Wiley-Blackwell
2.	Journals & Periodicals
	1. Journal of Bioinformatics and Computational Biology
	2. Bioinformatics
	3. Bioinformatics and Biology Insights
	4. BMC Bioinformatics

5. Briefings	in Bioinformatics	
3 Other Electroni Evaluation Scheme	c resources : 1) MH Education 2) NPTEL 3	3) Coursera Total Marks 100
Mid semester Marks	20	
End Semester Marks	40	
	Attendance	5 marks
Continuous Evaluation Marks	Quiz	10 marks
Continuous Evaluation Marks	Skill enhancement activities / case study	10 marks
	Presentation/ miscellaneous activities	15 marks

Course Outcomes	1.Develop an understanding of basic theory of biological databases.
	2. Appreciate their relevance for investigating specific contemporary biological questions through the use of bioinformatics tools
	3. Critically analyse and interpret results of bioinformatic analysis
	4. Develop the abilities for conducting in silico experiments.
	5. Demonstrate mastery of the core concepts of Bioinformatics
Additional Information to enhance learning	Expert talk required on specific topics.

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1

CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

	COURSE CODE COURS MSIM117 GENE MICROB					SEMESTER I		
Teaching Scheme (Hours)				Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit	
45	30	0	75	3	1	0	4	

Course Pre-requisites	Students should have basic knowledge about Microbiology.			
Course Category	Specialization			
Course focus	Employability			
Rationale	To have an overview of microbial response and it's components. The subject also explains the structure, function and regulation of Bacterial, Virus, Fungus and their effect on Human, environment.			
Course Revision/ Approval Date:	06/03/24			
Course Objectives (As per Blooms' Taxonomy)	 Remember To introduce the field of microbiology with special emphasis on microbial diversity. Apply To study microbial morphology, physiology and nutrition. Analyses To know the methods of culturing microorganisms Create To get insights in the methods involved in controlling growth of microbes. Understand Host- microbe interactions. 			

	Contact hours
20%	9+4
20%	9+4
20%	9+4
20%	9+4
20%	9+4
	20%

- 2. Simple staining techniques (e.g., using methylene blue, crystal violet) to observe bacterial morphology.
- 3. Inoculation techniques (streak plate, spread plate, pour plate) to isolate bacterial colonies.
- 4. Pure culture techniques and maintenance of bacterial cultures.
- 5. Biochemical tests.

Instructional Method and Pedagogy:

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

	Course O	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain		
After succes will be able	ssful completion of to:				
	oduce the field of microbial diversi	Remember	Explain, Describe, Discuss, Recall, Locate		
nutrition.		hology, physiology and	Apply	Apply, Practice, Interpret, Select, Correlate	
CO3 To kno	ow the methods of	Analyses and Evaluation	Compare, Classify, Select, Investigate		
CO4 To get growth of m	insights in the me icrobes	Create	Construct, Develop, Produce		
CO5 Host-	microbe interaction	Understand	Explain, Describe, outline, Predict, Summarise		
Learning R	esources		1		
 Reference books: 1. Textbook 1. D.K Maheshwari (1999) A textbook of Microbiology 2. R.Vasanthakumari (2007) Textbook of Microbiology. Pelczar, M. J., Reid, R. D., & Chan, E. C. (2001). Microbiology (5th ed.). New York: McGraw-Hill Willey, J. M., Sherwood, L., Woolverton, C. J., Prescott, L. M., & Willey, J. M. (2011). Prescott's Microbiology. New York: McGraw-Hill Matthai, W., Berg, C. Y., & Black, J. G. (2005). Microbiology, Principles and Explorations. Boston, MA: John Wiley & Sons. 6 					
 Journals & Periodicals Journal of Microbiology Current Science Journal, Indian journal of Biotechnology Nature Review microbiology Macromolecules 					
5		ic resources: 1) MH Education	2) NPTEL		
	tion Sahama	Total Marks			

Evaluation Scheme

Total Marks

Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
IVIATKS	MCQs	10 marks
	Skill enhancement activities / case study	15 marks
	Presentation/ miscellaneous activities	10 marks
	Total	40 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	5 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО						
CO 1	1	-	2	1	1	-
CO 2	1	3	2	2	-	-
CO 3	1	-	-	1	2	1
CO 4	2	3	2	-	2	2
CO 5	2	1	-	1	-	2

РО	PO1	PO2	PO3	PO4	PO5	PO6
СО						
CO 1	3	2	-	2	2	1
CO 2	-	1	1	2	-	-
CO 3	2	-	-	1	2	1
CO 4	2	1	2	3	2	2
CO 5	-	1	-	2	-	3

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial			Total Credit
45	30	0	75	3	1	0	4

Students should know have basic knowledge of molecular				
diagnostics.				
Specialization				
Specialization				
Scientific Temperament & Employability				
6/03/2024				
1. The objectives of this course are to sensitize students about				
recent advances in diagnostics and various facets of				
molecular medicine which has potential to profoundly alter				
many aspects of modern medicine including preor post-natal				
analysis of genetic diseases and identification of individuals				
predisposed to disease ranging from common cold to cancer				
2. Adequate knowledge about recent advances and				
technological developments in the field of diagnostics				
3. Selection of an appropriate diagnostic method/tool for a				
particular disease condition and sample type.				
4. Expertise to perform any diagnostic test with an ability to				
troubleshoot.				
5. The objectives of this course are to sensitize students about				
recent advances in molecular biology.				

Course Content (Theory)	Weightage	Contact hours	
Unit 1: Introduction to Molecular Diagnostics	20%	10	
Unit 2: Nucleic Acid Amplification Techniques	20%	10	
Unit 3: Regression Analysis: Simple linear regression, Multiple linear regression, Logistic regression, Model diagnostics and interpretation	20%	10	
Unit 4: Survival Analysis: Kaplan-Meier estimator, Cox proportional hazards model, Survival curves and censoring, Applications in clinical trials and epidemiological studies.	20%	10	
Unit 5:Diagnostic Assays for Infectious Diseases and Epidemiological StudyDesigns: Observational studies vs. experimental studies, Cross-sectionalstudies, Cohort studies, Meta-analysis			
Practicals:			
• Extraction of DNA and RNA from various sample types (e.g., cells, tissues, methods (e.g., phenol-chloroform extraction, silica-based columns).	blood) using di	fferent	
• Setting up and performing PCR reactions to amplify specific DNA sequences.			
• Assessment of nucleic acid quality and quantity (e.g., spectrophotometry, fluorometry)			

• Quantitative measurement of DNA or RNA targets. By using RT PCR

Instructional Method and Pedagogy: Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy	Blooms' Taxonomy Sub
	Domain	Domain
After successful completion of the above course, students will be able to: CO1 Able to understand various facets of molecular procedures and basics of genomics, proteomics and metabolomics that could be employed in early diagnosis and prognosis of human diseases	Understand, Remember& apply	Explain, Describe, Discuss, Recall, Locate

CO3Identify the role and importance of molecular diagnostics such as real-time PCR, epidemiological genotyping, microfluidics, bio- imaging and sequencing technologiesEvaluateClassify, Select, Investigate Construct, Develop, Produce Explain, Describe, outline, Predict, SummarizeCO4Students will be able to Incorporate both in silico and lab based techniques as part of a combined molecular diagnostics strategy.Understand,Classify, Select, Investigate Construct, Develop, Produce Explain, Describe, outline, Predict, Summarize	CO2 Acquire knowledge of various dia tools used in healthcare, industry and res		Apply, Practice, Interpret, Select,
imaging and sequencing technologiesApplyExplain, Describe, outline, Predict, SummarizeCO4 Students will be able to Incorporate both in silico and lab based techniques as part of a 	molecular diagnostics such as real-tim	e PCR,	Investigate Construct,
combined molecular diagnostics strategy. Understand,	imaging and sequencing technologies CO4 Students will be able to Incorpora	Apply ate both	Explain, Describe, outline, Predict,
CO5 Perform selected laboratory techniques,Remember&interpret results and prepare reportsapply	combined molecular diagnostics strategy CO5 Perform selected laboratory tech	v. Understand, nniques, Remember&	Summarize

Learning Resou	rces
1	 Textbook 1. Campbell, A. M., & Heyer, L. J. (2006). Discovering Genomics, Proteomics, and Bioinformatics. San Francisco: Benjamin Cummings. 2. Brooker, R. J. (2009). Genetics: Analysis & Principles. New York, NY: McGraw- Hill. 3. Glick, B. R., Pasternak, J. J., & Patten, C. L. (2010). Molecular Biotechnology: Principles and Applications of Recombinant DNA. Washington, DC: ASM Press. 4. Coleman, W. B., & Tsongalis, G. J. (2010). Molecular Diagnostics: for the Clinical Laboratorian. Totowa, NJ: Humana Press.
2	Reference book : Molecular Diagnostics, 3rd Edition Editors: George P. Patrinos Wilhelm Ansorge Phillip B. Danielson. Hardcover ISBN: 9780128029718. eBook ISBN: 9780128029886
3	Journal : Journal of Molecular Diagnostics, Nature reviews
5	Periodicals: Current science
6	Other Electronic resources: NPTL and UGC Pathshala lectures

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	20 marks			
Theory: End Semester Marks	40 marks			
Theory: Continuous Evaluation Component	Attendance	05 marks		
Marks	MCQs	10 marks		
	Skill enhancement activities / case study	15marks		
	Presentation/ miscellaneous activities	10 marks		
	Total	40 Marks		
Practical Marks				
	Attendance	05 marks		
	Practical Exam	30 marks		
	Viva	10 marks		
	Journal	5 marks		
	Total	50 Marks		

PO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	3	3	1	2	0	3
CO2	2	2	3	2	1	2
CO3	3	2	3	2	2	2
CO4	2	3	2	2	1	1
CO5	3	2	2	1	2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None Mapping of POs and COs

Mappi	<u> </u>					
PO	PO1	PO2	PO3	PO4	PO5	PO6
СО						
CO1	3	2	0	0	2	0
CO2	3	2	3	1	2	2
CO3	2	3	3	1	2	2
CO4	1	3	2	1	3	3
CO5	2	2	3	2	3	0

Teaching Scheme (Hours)				Teachin	g Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
30	0	0	30	2	0	0	2

Course Pre-requisites	Students should have basic Biostatistics
Course Category	Elective
Course focus	Skill development
Rationale	In this course students will learn descriptive statistics and its basic applications in real life. Students will also learn different types of tests for Hypothesis testing. Sutdents will understand the concepts of correlation and learn the methods of regression. They will also get an exposure to differntial and integral calculus and learn to solve the system of linear equations.
Course Revision/ Approval Date:	06/3/24
Course Objectives	To enable the student to:
(As per Blooms' Taxonomy)	 Remember: Use mean and variance to visualise the data and making decisions. Apply: Use the degree and direction of association between two variables, and fit a regression model to the given data Understand, Apply: Identify the type of statistical situation to which different tests can be applied. Understand: the fundamental concepts of Derivatives and Integration of functions Understand, Apply: Explain what is meant by statistical inference and concepts of approximation for system of equations

Course Content (Theory)	Weightage	Contact hours
Unit 1: Limits, Complete and Partial Differentials of Function		
	20%	6
Unit 2: Majors of Central tendency and Measures of dispersion		
	20%	6
Unit 3: Introduction to theory of Probability and Theoitical Distribution		
	20%	6
Unit 4: Correlation Analysis and Regression Analysis	20%	6
Unit 5: Statistical Inference and Tests of Hypothesis, ANNOVA	20%	6

Instructional Method and Pedagogy: Chalk-board, Presentation, Use of Geogebra. Group Discussion, Case Study, Quizziz application.

-

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1 : Apply: Calculate the simple linear regression equation for a set of data and able to solve the system of equations	Apply	Describe, Find
CO2 : Remember, Understand: Know the practical issues arising in sampling studies	Remember, Understand	Demonstrate & Examine, Find
CO3 : Apply, Analyse: Appropriately interpret results of analysis of variance tests, would be able to understand the variation in distribution of the data and importance of hypothesis testing using different tests.	Apply, Analyse:	Describe, Demonstrate & Examine, Find Describe,
CO4 : Analyse: Analyse statistical data using MS-Excel.The student would be able to correlate the given data and estimate the value of unknown variable.	Analyse:	Demonstrate & Examine

Learning Re	sources
1.	 Reference Books: 1. Probability and Statistics By T K V Iyengar, S chand, 3rd Edition, 2011. 2. Fundamentals of Mathematical Statistics by S C Gupta & V K Kapoor, Sultan Chand & Sons, New Delhi 2009.

2.	Journals & Periodicals:	
3.	Other Electronic Resources:	
	Geometry and Algebra: Geogebra.org/Calculator	
	MATLAB : Mathworks.com/	
	https://www.tutorialspoint.com/matlab/matlab_syntax.htm	

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous					
Evaluation Component Marks	Attendance	05 marks			
IVIAIKS	MCQs	10 marks			
	Open Book Assignment	15 marks			
	Open Book Assignment	10 marks			
	Total	40 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	20 marks			
	Viva	10 marks			
	Journal	10 marks			
	Discipline	05 marks			
	Total	50 Marks			
Project/ Industrial					
Internship Marks	Quantity of the Project/Industrial in terms of Language, Presentation & format.	30 marks			
	Practical understanding of the subject on the Project/Industrial.	30 marks			
	Industry/ University mentor's feedback on the Project/ Industrial.	30 marks			
	Attendance	10 marks			
	Total	100 Marks			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	1	2	0	0	0	1	1
CO2	1	2	0	0	0	1	1
CO3	1	2	0	0	0	1	1
CO4	2	2	1	0	0	1	2
CO5	2	3	0	1	0	1	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	1	0	0
CO2	2	2	1	1	0	0
CO3	1	2	1	1	0	0
CO4	2	2	2	1	1	0
CO5	2	2	1	1	1	0

COURSE CODE	COURSE NAME	SEMESTER
MSIM116	BIOPYTHON	I

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
30	0	0	30	2	0	0	2
Course Pren	equisites	Basic Knowl	edge of com	outers			
Course Cate	egory	Elective					
Course focu	S	Scientific Te	mperament &	& Employabil	lity		
Rationale Course Revision/		Know how to develop your skills in Python. Retrieve and analyze the biological data					
Approval Date:							
Course Obj	ectives	• To Remember the basic concepts of python					
(As per Bloo	oms'	• Understand to edit and run Python code					
Taxonomy)		• To analyze and evaluate file-processing python programs that produce output to the terminal and/or external files					
			e	1.	o analyse the ograms to pro	e	

Course Content (Theory)	Weig htage	Contact hours
Unit 1 Execution paradigms: how the computer turns your program into something it can run (interpretation, native compilation, bytecode compilation) Basic execution and memory model (Von Neumann architecture), Version control (likely SVN and git)	20%	9
Unit 2 Imperative programming constructs: functions, if-statements, loops (for, while), switchstatements, expressions. Basic data structuring constructs: variables, arrays, strings, structs, types, and pointers, Reading and writing files	20%	9
Unit 3: Unit tests — testing small sections of code,Debugging — strategies, debuggers, common errors Profiling — figuring out what's taking so long, Make — automating compilation, Basic data structures and algorithm design techniques: Sophisticated data structures, and algorithms will be introduced, along with more difficult programming assignments.	20%	9
Unit 4: Linear data structures: arrays, lists, stacks, queues; binary search,Dictionary data structures: binary search trees including tree traversals (DFS, BFS,pre-, in-, post-order); hash tables.	20%	9

Unit 5:		
Heaps, heapsort, Graphs; MST, Divide and conquer, recursion Dy	namic 20 %	
programming	20%)

	1. Develope an understanding of basic theoretical concepts of Python.
Course Outcomes	2. Appreciate their relevance for investigating specific contemporary biological questions through the use of Biopython
	3. Understand the concepts of object-oriented programming as used in
	Python
	4. Learn Biopython to enhance your skills for conducting in silico experiments.
	5. Demonstrate mastery of the core concepts of Bioinformatics
Additional Information to enhance learning	Expert talk required on specific topics.

Learning Re	sources				
1.	Textbook & Reference Book				
	1) Python: - The Bible- 3 Manuscripts in 1 Book: -Python Programming				
	•	ers -Python Programming for Intermediates -	Python Programming for		
		ed by Maurice J Thompson			
	· · · · · · · · · · · · · · · · · · ·	g python (5th Edition) by Mark Lutz, O'R	eilly Media, Inc (2013).		
	102100	781449355739	na and Warma Davahan		
		programming for biology by Tim J. Steve dge University Press 1st Ed. (2015) ISBN:978			
2.	Journals & P		0311843330		
۷.	Journals & I	eriourcais			
Evaluat	ion Scheme	Total Marks			
Theory: Mid	semester	20 marks			
Marks					
Theory: End	Semester	40 marks			
Marks					
Theory:	Continuous				
	n Component	Attendance	05 marks		
Marks		MCQs	10 marks		
		Skill enhancement activities / case	15marks		
		study			
		Presentation/ miscellaneous activities	10 marks		
		Total	40 Marks		

Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	5 marks
	Total	50 Marks

РО		PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	3	3	1	2	0	3
CO2	2	2	3	2	1	2
CO3	3	2	3	2	2	2
CO4	2	3	2	2	1	1
CO5	3	2	2	1	2	0

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
СО						
CO1	3	2	0	0	2	0
CO2	3	2	3	1	2	2
CO3	2	3	3	1	2	2
CO4	1	3	2	1	3	3
CO5	2	2	3	2	3	0

COURSE CODECOURSE NAMESEMESTERMSIM1117MATHEMATICSI

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
30	0	00	30	2	0	0	2

Course Pre-requisites	Students should have basic knowledge of Mathematics and statistics
Course Category	Elective
Course focus	Skill development
Rationale	In this course students will learn descriptive mathamatics and its basic applications in real life.
Course Revision/	06/03/2024
Approval Date:	
Course Objectives	To enable the student to:
(As per Blooms'	1 Remember: Use mean and variance to visualise the data and
Taxonomy)	making decisions.
	2 Apply: Use the degree and direction of association between two variables, and fit a regression model to the given data
	3 Understand, Apply: Identify the type of statistical situation to
	which different tests can be applied.
	4 Understand: the fundamental concepts of Derivatives and
	Integration of functions
	5 Understand, Apply: Explain what is meant by statistical
	inference and concepts of approximation for system of equations

Course Content (Theory)	Weightage	Contact hours
Unit 1: Basics of algebra, Linear algebra		
	20%	6
Unit 2: Matrices and determinants	20%	6
		0
Unit 3: Trigonometry and its identities	20%	6
Unit 4: Geometry	20%	6
Unit 5: Discrete mathematics		
	20%	6

Instructional Method and Pedagogy: Chalk-board, Presentation, Group Discussion, Case Study, Quiz application.

- Course Outcome:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:		
CO1 : Apply: Calculate the simple linear regression equation for a set of data and able to solve the system of equations	Apply	Describe, Find
CO2: Remember, Understand: Know the practical issues arising in sampling studies	Remember, Understand	Demonstrate & Examine, Find
CO3 : Apply, Analyse: Appropriately interpret results of analysis of variance tests, would be able to understand the variation in distribution of the data and importance of hypothesis testing using different tests.	Apply, Analyse:	Describe, Demonstrate & Examine, Find Describe,
CO4 : Analyse: Analyse statistical data using MS-Excel.The student would be able to correlate the given data and estimate the value of unknown variable.	Analyse:	Demonstrate & Examine

Learning I	Resources					
1.	 Fundament Chand & Sons Higher Eng Differential 	 Reference Books: 1. Fundamentals of Mathematical Statistics by S C Gupta & V K Kapoor, Sultan Chand & Sons, New Delhi 2009. 2. Higher Engineering Mathematics By Dr. B. S. Grewal, Khanna Publishers 3. Differential Calculus, Shanti Narayan, P.K. Mittle, S. Chand, New Delhi 2005 4. Integral Calculus, Shanti Narayan, P.K. Mittle, S. Chand, New Delhi 2005 				
2.	Journals & Per					
3.	MATLAB : M	ic Resources: Algebra: Geogebra.org/Calculator athworks.com/				
Evalua	tion Scheme	torialspoint.com/matlab/matlab_syntax.ht Total Marks	um			
Theory: M Marks	id semester	20 marks				
Theory: En Marks	nd Semester	40 marks				
Evaluatio	: Continuous on Component Marks	Attendance MCQs Open Book Assignment	05 marks 10 marks 15 marks			
		Open Book Assignment Total	10 marks 40 Marks			
Pract	ical Marks	Attendance	05 marks			
		Practical Exam	20 marks			
		Viva	10 marks			
		Journal	10 marks			
		Discipline	05 marks			
		Total	50 Marks			

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7
CO1	1	2	0	0	0	1	1
CO2	1	2	0	0	0	1	1
CO3	1	2	0	0	0	1	1
CO4	2	2	1	0	0	1	2
CO5	2	3	0	1	0	1	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	1	0	0
CO2	2	2	1	1	0	0
CO3	1	2	1	1	0	0
CO4	2	2	2	1	1	0
CO5	2	2	1	1	1	0

Teaching Scheme (Hours)					Teaching C	redit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
45	30	0	75	3	1	0	4

Course Pre-requisites	Students should know have basic knowledge of Cell and Molecular Biology		
Course Category	Compulsory		
Rationale	As we go down the scale of magnitude from cells to organelles to molecules, the understanding of various biological processes becomesdeeper and inclusive.		
Course Revision/	06/03/2024		
Approval Date:			
Course Objectives (As	Remember To introduce the advanced field of cell and		
per Blooms'	molecular biology.		
Taxonomy)	Apply To understand advanced cellular and molecular functions.		
	Analyses Underlying mechanisms of cellular and molecular functions.		
	Create Understanding of strategies to develop drugs based on gained knowledge		
	Understand Drugs discovery and development based on basic		
	cellularfunctions.		

Course Content (Theory)	Weightage	Contact hours
Unit 1: Cellular Membranes and Organelles	20%	10
Unit 2:		
Gene Expression and Regulation	20%	10
Unit 3: Signal Transduction Pathways	20%	10
Unit 4: Molecular Genetics	20%	10
Unit 5: Cell Cycle Regulation and Cell Division, Stem Cells and Regenerative Medicine	20%	10
 Practicals: Genomic DNA Extraction, Purification and Quantitation Plasmid DNA Extraction, Purification and Quantitation RNA Extraction, Purification and Quantitation Protein Extraction, Protein Purification Protein Quantitation Protein Quantitation Observation of various cell types under Microscope Cell cycle analysis – onion root tip experiment Cell counting and viability test Sub cellular fractionation of cellular organelle (nuclear, mitochondrial a differential centrifugation To demonstrate selective permeability of an artificial membrane (cellop) 	·	action) by

Instructional Method and Pedagogy: Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy	Blooms' Taxonomy Sub
	Domain	Domain
After successful completion of the above course, students will		Explain,
be able to:		Describe,
CO1 The structure, function, and biosynthesis of cellular	Understand,	Discuss,
membranes and organelles.	Remember	Recall, Locate
memoranes and organenes.	& apply	

CO2 Cell growth and cell cycle regulation	Apply	Apply,
		Practice,
		Interpret,
CO3 Cellular transport, receptors, and cell signaling	Evaluate	Select,
		Correlate
CO4 The cytoskeleton, the extracellular matrix, and cell		Compare,
movements	Apply	Classify,
		Select,
CO5 Gene expression and regulation		Investigate
	Understand,	Construct,
	Remember	Develop,
	& apply	Produce
		Explain,
		Describe,
		outline, Predict,
		Summarize

Learning Resou	rces						
1	Textbook						
	1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008).						
	Molecular Biology of the Cell (5th Ed.). New York: Garland Science.						
	2. Lodish, H. F.(2016). Molecular Cell Biology (8thEd.). New York:W.H.Freeman.						
	3.Krebs,J.E.,Lewin,B.,Kilpatrick,S.T.,& Goldstein,E.S.(2014).Lewin'sGenesXI.						
	Burlington, MA: Jones & Bartlett Learning.						
	4.Cooper,G.M.,&Hausman,R.E.(2013).TheCell:aMolecularApproach(6thEd.).						
	Washington: ASM ; Sunderland.						
	5. Hardin, J., Bertoni, G., Kleinsmith, L. J., & Becker, W.M. (2012). Becker's World						
	of the Cell. Boston (8th Ed.). BenjaminCummings.						
	6. Watson, J. D. (2008). Molecular Biology of the Gene (5th ed.). Menlo Park, CA:						
	Benjamin/Cummings.						
	Reference books						
	1. Karp, G. Cell and Molecular Biology: Concepts and Experiments. John Wiley &						
	Sons.						
	2. De Robertis, E.D.P. and De Robertis, E.M.F. Cell and Molecular Biology. VIII						
	Edition.						
	3. Cooper, G.M. and Hausman, R.E. The Cell: A Molecular Approach. V Edition.						
	ASMPress						
2	Journals & Periodicals						
	Journal <u>https://www.omicsonline.org/cellular-and-molecular-biology.php</u>						
	1. Resonance						
	2. Current Science						
	3. Science Reporter						
	4. Safari						
3	Other Electronic resources: 1) MH Education 2) NPTEL						
	E- Links 1. The Inner Life of the Cell						

2. Mitosis World Movies
3. Davidson College Biology Videos
4. Borisy Lab Movie Page
5. The Biology Project Meiosis I and II Movies

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Skill enhancement activities / case study	15 marks			
	Presentation/ miscellaneous activities	10 marks			
	Total	40 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	30 marks			
	Viva	10 marks			
	Journal	5 marks			
	Total	50 Marks			

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None Mapping of POs and COs

	, ing of i					
РО	PO1	PO2	PO3	PO4	PO5	PO6
СО						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

COURSE CODE MSIM212		RESEAR	COURSE NAME RCH METHODOLOGY AND IPR			SEMEST II	ÈR
	Teaching Sch	eme (Hours)		Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Tot al Cre dit
45	30	0	75	3	1	0	4

Course Pre-requisites	Basic Understanding of Science and Communication.
Course Category	Compulsory
Course focus	Employability
Rationale	To have an idea how research methodology lies in its ability to provide a systematic approach to investigating and answering research questions. It serves as a roadmap for researchers, helping them design and conduct their studies effectively and ensure the validity and reliability of their findings. Here are a few key points that highlight the rationale behind research methodology
Course Revision/ Approval Date:	06/03/24
Course Objectives (As per Blooms' Taxonomy)	 Remember: To give background on history of science, emphasizing methodologies used to do research and India's IPR Policy. Apply: To introduce the framework of research methodologies for understanding effective lab practices and scientific communication and intellectual property rights and their implications in biological research and product development. Analyses: To inculcate scientific and professional ethics to learn biosafety and risk assessment of biotechnology products Create: To impart skills related to various media for scientific communication and regulations of products derived from biotechnology Understand: To impart basic knowledge of lab skills to learn risk assessment on biotechnology and microbiology, become familiar with ethical issues in biological research.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Research Methodology: Definition and importance of research, Types of research (qualitative, quantitative, mixed methods), The research process (formulating research questions, hypothesis, etc.) Ethical considerations in research	20%	9
Unit 2: Research Design: Experimental design Quasi-experimental design, Non- experimental design	20%	9
Unit 3: Sampling Techniques, Data Collection Methods and Analysis, research writing and ethics.		
	20%	9
Unit 4: Introduction To Intellectual Property; types of IP: patents, trademarks, copyright & amp; related rights, industrial design, traditional knowledge, geographical indications, protection of new GMOs	20%	9
Unit 5: International Framework for the protection of IP; IP as a factor in R&D IPs of relevance to biotechnology and few case studies; introduction history of GATT, WTO, WIPO and TRIPS	20%	9
Practicals:		
 Discussing ethical considerations in research involving human subject biohazards. Understanding regulatory requirements (e.g., IRB approval, animal ca 3. Conducting literature searches using databases like PubMed, Google S 4. Critical evaluation and synthesis of scientific literature relevant to a re 5. Formulating testable hypotheses based on literature review and resear 6. Designing experiments to test hypotheses, including control and experiments. 	re protocols). Scholar. esearch topic. ch questions.	

Instructional Method and Pedagogy:

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

	Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain			
able to:	sful completion of the above course, students will be	Remember	Explain, Describe,			
CO1 To bec methodology	come familiar with India's IPR Policy, and research	Apply	Discuss, Recall, Locate			
_	ovide basic knowledge on intellectual property rights plications in biological research and product t and	, ibbil	Apply, Practice, Interpret, Select, Correlate			
products and	Irn biosafety and risk assessment of biotechnology I learn about research methodology and to inculcate d professional ethics	Analyses and Evaluation	Compare, Classify, Select, Investigate Construct,			
	CO4 To become familiar with regulations of products derived frombiotechnology and to learn about research methodology		Develop, Produce			
CO5 To microbiolog research,	microbiology, become familiar with ethical issues in biological		Explain, Describe, outline, Predict, Summarize			
Learning R	esources					
1.	On Being a Scientist: a Guide to Responsible Conduct Washington, D.C.: National Academies Press.	Research. (200	09).			
	Gopen, G. D., & Smith, J.A. The Science of Scientific (Nov-Dec 1990), 550-558.	Writing. Ame	rican Scientist,78			
	Valiela, I. (2001). Doing Science: Design, Analysis, an Scientific Research. Oxford: Oxford University Press.		tion of			
	Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan India.					
 Ganguli,P.(2001).Intellectual Property Rights: Unleashing TheKnowledge Economy. New Delhi: Tata McGraw-Hill Pub National IPR Policy, Department ofIndustrial Policy & Promotion, Ministry of Commerce, GoI 						
5	Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.					
	Karen F.Greif and Jon F. Merz, Current Controversies Case Studies of Policy Challenges from New Technol Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J.W.	ogies, MIT Pre	ess.			

(2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9 Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An Overview of General Features Of Risk Assessments of Genetically Modified Crops. Euphytica, 164(3), 853-880. doi:10.1007/s10681-007-9643-8 Guidelines for Safety Assessment of Foods Derived from Genetically Engineered Plants. 2008. Journals & Periodicals 1. International Journal of Research Methodology 2. International Journal of Science and Research Methodology 3. The WIPO Journal Periodicals: Journal of Research Practice Other Electronic resources: Movies: Naturally Obsessed, The Making of a • Scientist Office the Controller General Patents, Designs & Trademarks; Department Of • Industrial Policy & Promotion; Ministry of Commerce & Industry; Government of India. http://www.ipindia.nic.in/ 2. World Intellectual PropertyOrganisation. http://www.wipo.int 3. International Union for the Protection of New Varieties of Plants. http://www.upov.int 4. World Trade Organisation. http://www.wto.org 5. National Portal of India. http://www.archive.india.gov.in 6. National Biodiversity Authority. http://www.nbaindia.org 7. Recombinant DNA SafetyGuidelines, 1990 Department of Biotechnology, Ministry of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/ divisions/csurv/geac/annex-5.pdf •

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	20 marks					
Theory: End Semester Marks	40 marks					
Theory: Continuous Evaluation Component Marks	Attendance MCQs	05 marks 10 marks				
	Skill enhancement activities / case study	15 marks				
	Presentation/ miscellaneous activities	10 marks				
	Total	40 Marks				
Practical Marks	Attendance	5 marks				
	Practical Exam	30marks				
	Viva	5 marks				
	Journal	5marks				
	Discipline	5marks				
	Total	50 Marks				

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	2	-	2	1	1	-
CO2	1	-	2	2	-	-
CO3	-	-	-	1	2	1
CO4	1	3	2	-	2	1
CO5	2	1	-	1	-	2

Mapping of POs and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	-	2	-	2	2	1
CO2	1	2	1	2	-	-
CO3	2	-	-	1	-	1
CO4	1	1	2	-	2	2
CO5	-	1	-	2	-	-

	RSE CODE ISIM213		BIOPRO	COURSE NAME SEMESTER IOPROCESS ENG II &TECH			ER
	Teaching Sch	eme (Hours	me (Hours) Teaching Credit				
Lecture	Practical	Tutoria	l Total Hours	Lecture	Practical	Tutorial	Total Credit
3	1	0	75	3	1	0	4

Course Pre-requisites	Basic Understanding of industrially important microorganisms
Course Category	Core.
Course focus	Scientific Temperament & Employability
Rationale	Bioprocess engineering is an ever growing field since it is a combination of natural resources, Science and technology. The basic science provides us with the knowledge about the living organisms such as plants, animals, bacteria and fungi but the bioprocess engineering helps in development of the essential skills required to utilise the living organisms for the betterment of the human beings and the nature itself.
Course Revision/ Approval	06/03/2024
Date:	
Course Objectives	1. Remember: Basics of Microbiology
(As per Blooms' Taxonomy)	2. Apply: The basic concepts to industrial applications
	3. Analyses: Integration of science with technology.
	4. Create: Models of Industrial designs and applications
	5. Understand: How living organisms can be used for value creation, product manufacturing and societal development.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Bioprocess Engineering: Overview of bioprocess engineering principles, Applications of bioprocess engineering in biotechnology and industrial microbiology, Role of bioprocess engineers in various industries.		9
Unit 2: Microbial Fermentation: Fundamentals of microbial fermentation, Types of fermentation processes (batch, fed-batch, continuous). Fermentation kinetics and modelling		9
Unit 3: Bioreactor Design and Operation, Downstream Processing, Process Optimization and Scale-Up	20%	9
Unit 4: Emerging Trends in Bioprocess Engineering	20%	9
 Practicals: 1. Isolation of industrially important microorganism from soil samples 2. Screening of industrially important microorganism 3. Optimization of suitable conditions for industrially important product 4. Isolation of amylase enzyme producing bacteria and amylase enzyme 5. Immobilization of enzyme 		

- Fermentor studies
 Production of industrially important product by using fermentor

Course Outcomes:	Blooms'	Blooms'
	Taxonomy	Taxonomy Sub
	Domain	Domain
After successful completion of the above course, students will be		Explain, Describe,
able to:		Discuss, Recall,
CO1 To educate students about the fundamental concepts of bioprocess technology	Remember	Locate
CO2 To know the relevance of microorganisms from industrial context	Apply	Apply, Practice, Interpret, Select, Correlate
CO3 To know the importance of design and operations of various industrial fermenters	Analyses and Evaluation	Compare, Classify, Select, Investigate
CO4 To get a knowhow of basic methods involved in production of biobased products	Create	Construct, Develop, Produce

iotechnology industry	Understand	Explain, Describe, outline, Predict, Summarise
-----------------------	------------	--

1.	Textbook:
1.	1. Bailey, J. E., & Ollis, D. F. (1986). Biochemical Engineering Fundamentals. New
	York:
	McGraw-Hill.
	2. El-Mansi, M., & Bryce, C. F. (2007). Fermentation Microbiology and Biotechnology.
	Boca Raton: CRC/Taylor & Francis.
	Reference books
	1. Shuler, M. L., & Kargi, F. (2002). Bioprocess Engineering: Basic Concepts.
	Upper Saddle River, NJ: Prentice Hall.
	2. Stanbury, P. F., & Whitaker, A. (2010). Principles of Fermentation Technology.
	Oxford:
	Pergamon Press.
	3. Blanch, H. W., & Clark, D. S. (1997). Biochemical Engineering. New York: M.
	Dekker.
2.	7. Periodicals: Science Daily
	8. Journal: Current Science, Biotechnology and Bioprocess Engineering
3	Other Electronic resources:
	1) NPTEL
	2) SWAYAM
	3) UGC - epathshala
	4) indiabioscience.org

Evaluation Scheme	Total Marks				
Theory: Mid semester	20 marks				
Marks					
Theory: End Semester	40 marks				
Marks					
Theory: Continuous					
Evaluation Component	Attendance	05 marks			
Marks	MCQs	10 marks			
	Skill enhancement activities / case study	15 marks			
	Presentation/ miscellaneous activities	10 marks			
	Total	40 Marks			

Practical Marks		
	Attendance	5 marks
	Practical Exam	30 marks
	Viva	05 marks
	Journal	05 marks
	Spotting	5 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	2	-	2	1	1	-
CO2	1	-	2	2	-	-
CO3	-	-	-	1	2	1
CO4	1	3	2	-	2	1
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	-	2	-	2	2	1
CO2	1	2	1	2	-	-
CO3	2	-	-	1	-	1
CO4	1	1	2	-	2	2
CO5	-	1	-	2	-	-

COURSE CODECOURSE NAMEMSIM214ADVANCE IMMUNOLOGY AND
VIROLOGY

Teaching Scheme (Hours)					Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial To			
3	1	0	75	3	1	0	4

Course Pre-requisites	Basic Understanding of Science and Communication.			
Course Category	Specialization			
Course focus	Employability			
Rationale	Immunology seeks to unravel the complexities of the immune system, which is responsible for defending the body against pathogens and maintaining overall health. By studying immunology, we gain insights into how our bodies protect against infections, recognize and eliminate cancer cells, and regulate immune responses.			
Course Revision/	06/03/24			
Approval Date:				
Course Objectives	1. Remember: To learn about structural features of			
(As per Blooms'	components of immune system as well as their function			
Taxonomy)	 Apply: To gain knowledge on development of the immune system Analyses: To predict about nature of immune response that develops against bacterial, viral or parasitic infection Create: To understand the mechanisms by which our body elicits immune response Understand To understand basic immunological methods involved in research and clinical/applied science 			

Course Content (Theory)	Weightage	Contact hours
Unit 1: Immunology: fundamental concepts and overview of the immune system, Components of the immune system	20%	9
Unit 2: Immune responses generated by B and T lymphocytes, Antigen and antibodies interaction	20%	9
Unit 3: Types: Active and passive immunity, Hypersensitivity (HS) and its types, Auto immunity, Transplantation	20%	9
Unit 4: Classification, Morphology, size, ultra structure and life cycle of some representative viruses, Cultivation and purification of viruses	20%	9
Unit 5: Virus-cell interaction, Host cell response to viral infections, Vaccine development and application, Vaccine trials and good clinical practice	20%	9

Practicals:

1. Identification of various immune cells by morphology – Leishman staining, Giemsa staining. 2. 2. Differential counts.

- 3. Total counts.
- 4. Agglutination Reactions- Latex Agglutination reactions- RF, ASO, CRP.
- 5. Haemagglutination Reactions- Blood Grouping forward and reverse, Rh Typing, Coomb's test, TPHA.
- 6. Visit to blood bank.
- 7. Serum electrophoresis.
- 8. PAGE of serum proteins.
- 9. ELISA
- 10. Enrichment of bacterial Phages
- 11. Plaque assay
- 12. Phage titre estimation

Instructional Method and Pedagogy:

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

Course Outcomes:	Blooms'	Blooms'
	Taxonomy	Taxonomy
	Domain	Sub Domain
After successful completion of the above course, students will be		Explain,
able to:		Describe,
		Discuss,
		Recall, Locate
CO1 To learn about structural features of components of immune system as well as their function	Remember	
		Apply,
CO2 To gain knowledge on development of the immune system	Apply	Practice,
		Interpret,
		Select,
		Correlate
CO3 To predict about nature of immune response that develops	Analyses	Compare,
against bacterial, viral or parasitic infection	and	Classify,
	Evaluation	Select,
		Investigate
CO4 To understand the mechanisms by which our body elicits	Create	Construct,

research and c	rstand basic immunological methods involved in clinical/applied science	Understand	Develop, Produce Explain, Describe, outline, Predict, Summarize			
Learning Res		T	(4) - 1'4'			
1.	Goldsby RA, Kindt TJ, Osborne BA. (2007). Kuby's W.H. Freeman and Company, New York.	Immunology.	oth edition			
2.	 Reference books : Brostoff, J., Seaddin, J.K., Male, D.,& Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub. Murphy, K., Travers, P., Walport, M., & Janeway,C. (2012). Janeway's Immunobiology. New York: GarlandScience. Paul, W.E. (2012). Fundamental Immunology. New York:Raven Press. Goding, J. W. (1996). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodiesin Cell Biology, Biochemistry, and Immunology. London: Academic Press. Parham, P.(2005). The Immune System. New York:Garland Science. 					
3.	Journals:					
4.	1. Journal of Immunology 2. Molecular Immunology					
5.						

Evaluation Scheme	Total Marks	
Theory: Mid semester	20 marks	
Marks		
Theory: End Semester	40 marks	
Marks		
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	10 marks
	Skill enhancement activities / case study	15 marks
	Presentation/ miscellaneous activities	10 marks
	Total	40 Marks

Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	05 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	3	1	2	3	-
CO2	2	2	2	2	-	-
CO3	1	1	-	1	1	-
CO4	-	1	1	-	2	1
CO5	-	-	1	1	-	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None Mapping of PO and COs

PO	PO1	PO2	PO3	PO4	PO5	PO6
CO	3	1	-	2	2	3
CO1	2	I	3	2	2	2
CO2	3	1	3	3	3	3
CO3	2	2	1	-	2	2
CO4	3	1	-	-	2	3
CO5	3	1	-	2	2	3

COURSE CODE MSIM215

COURSE NAME NANOSCIENCE

Teaching Scheme (Hours)			Teaching Credit				
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
30	0	0	30	2	0	0	2

Course Pre-requisites	Bachelor of Science degree in the necessity
Course Category	Skill Enhancement Elective
Course focus	Employability
Rationale	There is plenty of room at the bottom. Nanomaterials have revolutionized almost all spheres of human activity ranging from health care to chemical and biochemical industries. Nanomaterials exhibit astounding properties and devices based on nanomaterials are highly efficient making the knowledge of the science underlying the function of the nanomaterials inevitable. This has been the rational behind offering the course on "Nanoscience" to the master of science students specializing in either Biotechnology or microbiology
Course initiated/	06/03/24
Approval Date:	
Course Objectives	1. To equip the students with the knowledge on the Science of
(As per Blooms'	nanoworld and to show them that there is indeed plenty of room at the bottom
Taxonomy)	 To equip the students with the skill to characterize nanomaterials To make the students understand about the application of nanomaterials in medicine, drug, food and cosmetic industries. To make the students understand about the application of nanomaterials in sensors and artificial implants. To make the students understand about the application of nanomaterials in catalysis, energy sector and to expose the students to the frontiers of nanoscience, including space and marine exploration.

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Nanobiotechnology; Concepts, Different formats of nanomaterials and applications	20%	6
Unit 2: Nano – particles and Nano material Development : Concepts, optimization of nanoparticle properties and development	20%	6
Unit 3: Methods of characterization of nanomaterials: XRD, XPS, SEM, TEM, XRM; properties of nanomaterials	20%	6

Unit 4: Applications food;agriculture; co implants,diagnostics,therapy	osmetics;	aterials: Mea sensors,	drug; tificial	20%	6
Unit 5: Nano – toxicity and	Life Cycle As	ssessment		20%	6

Instructional Method and Pedagogy:

Classroom lecture, discussion, question and answer method, Case studies, quizzes, presentations, role play, expert lecture (consultant), imaginative approach to view the nanoobjects in action.

Course outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will		
be able to:		Understand,
CO1: know the science of nanomaterials and their synthesis methods	Cognitive	apply
CO2: understand the peculiar and unique properties of nanomaterials	Cognitive	Understand, apply
CO3: understand the application of nanomaterials in the fields of medicine, food, drug and cosmetic industries	Cognitive	Understand, apply
CO4: understand the application of nanomaterials in the fields of sensors and artificial implants	Cognitive	Understand, apply
CO5: understand the application of nanomaterials in the fields of catalysis, energy, surveillance and defense;	Cognitive	Understand, apply and
know the frontiers of nanoscience related to space and		create
marine exploration		

Learn	ing resources
1	Reference books:
	1. CNR Rao, A Muller, A K Cheetham (Editors), The chemistry of nanomaterials:
	Synthesis, properties and applications, Wiley-VCH,
	2. B Viswanthan, Nanomaterials, Narosa publishing house, New Delhi,
	3. Nanomedicine,
2	Journals & Periodicals:
	ACS Nano, ACS publishers
	Small, Wiley
3	Other Electronic Resources:

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	20 marks	
Theory: End Semester Marks	40 marks	
Theory: Continuous	Attendance	05 marks
Evaluation Component Marks	MCQs	10 marks

	Open Book Assignment	15 marks
	Open Book Assignment	10 marks
	Total	40 Marks
Practical Marks	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	1	2
CO2	1	2	3	1	1
CO3	2	-	1	2	2
CO4	1	2	2	3	3
CO5	2	3	1	2	4

Mapping of POs & COs

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	2	1	2
CO2	3	1	2	1	1
CO3	1	2	-	2	1
CO4	2	1	2	3	3
CO5	1	2	3	2	4

COURSE CODE MSIM216

COURSE NAME DRUG DISCOVERY

Teaching Scheme (Hours)				Teach	ing Credit		
Lecture	Practical	Tutorial	Total Hours	Lecture Practical Tutorial Total Credit			
30	0	0	30	2	0	0	2

Course Pre-requisites	Bachelor of Science degree in the necessity
Course Category	Skill Enhancement Elective
Course focus	Employability
Course initiated/	06/03/24
Approval Date:	
Course Objectives	1 This course will give a broad overview of research and
(As per Blooms'	development carried out in industrial setup towards drug discovery.2 It will present drug development as a process involving target
Taxonomy)	 selection, lead discovery using computer-based methods and combinatorial chemistry/high-throughput screening 3 Safety evaluation, bioavailability, clinical trials, and the essentials of patent law will also be discussed. 4 Along the way you will learn about molecular recognition, computer aided drug design, and toxicology as applied to the development of new medicines. 5 This course develops the key themes in the drug discovery and development pipeline and highlights the multidisciplinary nature of the research and development process.

Course Content	Weightage	Contact hours	Pedagogy
Unit 1: Introduction to Drug Discovery and Development (In Silico and In Vivo Models)	20%	06	Power point, Power point + Video, Chalk & Board, Students' seminar, Quiz etc
Unit 2: Molecular Dynamics simulation	20%	06	Power point, Power point + Video, Chalk & Board, Students' seminar, Quiz etc
Unit 3: Combinatorial Chemistry Analysis and design of combinatorial libraries	20%	06	Power point, Power point + Video, Chalk & Board, Students' seminar, Quiz etc
Unit 4: Drug Designing & The identification of novel drug targets	20%	06	Power point, Power point + Video, Chalk & Board, Students' seminar, Quiz etc
Unit 5: In Vivo Drug Validation	20%	06	Power point, Power point + Video, Chalk & Board, Students' seminar, Quiz etc

Lea	rning Resources
1.	Textbook:
	1. Drug Discovery and Development; Technology in Transition. HP Rang. Elsevier Ltd 1 st
	edition 2006.
	2. Pharmacology in Drug Discovery. T. P. Kenakin. Elsevier, 1st Edition 2012.
	3. An introduction to medicinal chemistry. G. L. Patrick. 5 th Edition Oxford UK, Oxford
	University Press, 2013.
2.	Reference books
	1. Krogsgaard-Larsen et al. Textbook of Drug Design and Discovery. 4th Edition.
	CRC Press.
	2. Kuhse, H. (2010). Bioethics: an Anthology. Malden, MA: Blackwell.
	3. Nally, J. D. (2006) GMP for Pharmaceuticals. 6th edition. CRC Press
	4. Brody, T. (2016) Clinical Trials: Study Design, Endpoints and Biomarkers, Drug Safety,
	and FDA and ICH Guidelines. Academic Press.
3.	Journal:
	1. Drug Discovery Today.
	2. Natures Review Drug Discovery.
	3. Drug, Discovery, Development and Therapy.
4.	Periodicals:
	1. SLAS Discovery.
	2. Marine Drugs.
5.	Other Electronic resources: NCBI, ENSEIVIBL, VISTA, UCSC etc

Evaluation Scheme	Total Marks 50		
Mid semester Marks	20		
End Semester Marks	40		
	Attendance	5 marks	
Continuous Evaluation	Quiz	10 marks	
Marks	Skill enhancement activities / case study	15 marks	
	Presentation/ miscellaneous activities	10 marks	

Course Outcomes	 On completion of this course, students should be able to understand the basics of R&D in drug discovery and should be able to apply knowledge gained in respective fields of pharmaceutical industry. Demonstrate an understanding of the steps involved in the drug discovery and design process. 			
	3. Demonstrate an awareness of the important contributions the different discipline areas make to the drug discovery and development process			
	4. Critically analyse biological pathways for their potential as drug targets for a given disease.			
	5. Demonstrate the ability to use evidence-based approaches to guide decision making during the drug discovery and development process.			
Additional Information to enhance learning	Any site visit required or expert talk required on specific topics.			

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	3	1	2	3	-
CO2	2	2	2	2	-	-
CO3	1	1	-	1	1	-
CO4	-	1	1	-	2	1
CO5	-	-	1	1	-	1

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of PO and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO	3	1	-	2	2	3
CO1	2	-	3	2	2	2
CO2	3	1	3	3	3	3
CO3	2	2	1	-	2	2
CO4	3	1	-	-	2	3
CO5	3	1	-	2	2	3

	JRSE CODE MSIM301			SE NAME SEMESTER CROBIOLOGY III			ER
	Teaching Sch	eme (Hou	rs)	Teaching Credit			
Lecture	Practical	Tutoria	al Total Hours	Lecture	Pract	tical Tutorial	Total Credit
3	0	0	45	3	0	0	3

Course Prerequisites	Students should have basic knowledge about Microbiology
Course Category	Core Professional.
Course focus	Scientific Temperament & Employability
	To gain an understanding of mechanisms of infectious disease transmission, principles of aseptic practice, and the role of the human body's normal microflora
Course Revision/ Approval	14/03/2020
Date:	
Course Objectives	1. Remember Concepts of basic Microbiology
(As per Blooms' Taxonomy)	2. Apply understanding pathogenic microorganisms
	3. Analyses the mechanisms by which they cause disease in the human body
	4. Create an understanding how interactions network develops5. Understand applications both scientific and industrial

Course Content (Theory)	Weightage	Contact hours
Unit 1: Theory: Infection: types of infection, sources of infection, reservoirs and vehicles of infection, predisposing factors. Host-parasite relationship governing the infection and establishment of disease, factors affecting virulence. Normal microflora of the human body: normal flora of skin, respiratory, gastrointestinal, genital tract, role of resident flora, concept of probiotics. Mode of spread of infection; Respiratory, skin, wound & burn infection, venereal infections, alimentary tract infection, blood borne infection and nosocomial infection.	20%	9

Unit 2: Infection mechanism		
Theory: Infections caused by Gram positive cocci and Gram-negative cocci: Source of infection, Pathogenicity, Epidemiology & Lab diagnosis of <i>Staphylococcus, Streptococcus and Neisseria</i> (meningitis, gonorrhea). Infections caused by Gram negative bacteria of family Enterobacteriaceae: Source of infection, Pathogenicity, Epidemiology & Lab diagnosis of <i>E.coli</i> , <i>Klebsiella, Proteus, Pseudomonas, Shigella dysenteriae and Salmonella</i> <i>typhi</i> . Infection caused by Gram Positive bacilli: Source of infection. Pathogenicity, Epidemiology & Lab diagnosis of <i>Corynebacterium</i> <i>diphtheriae, Bacillus anthracis, Clostrodium tetani, Vibrio cholerae</i> . Disease caused by acid-fast bacteria and intracellular bacteria: Source of infection. Pathogenicity, Epidemiology & Lab diagnosis of Mycobacterium tuberculosis, <i>Mycobacterium leprae, Rickettsia and Chlamydia</i> .	20%	9
Unit 3: Pathogenic Micro-organism:		
Theory: Morphology, pathogenesis, immune response, diagnosis and prevention of- Pox viruses (Variola, Vaccinia, Small pox) Herpes Simplex type I and type II, Picorna viruses (Entero viruses and Polio viruses).	20%	9
Paramyxo viruses (Rubella virus and Para influenza viruses), Orthomyxo viruses (Measles & Mumps viruses). Hepatitis viruses (Type A, B, C, D, E), Arbo viruses (Alpha virus and Flavi viruses), Rhabdo viruses (Rabies virus). Oncogenic viruses, HIV virus.		
Unit 4: Infection Life cycle		
Theory: Important protozoal diseases: Route of entry, Life Cycles, Immunity, disease produced, diagnosis & prophylaxis of <i>Plasmodium vivax</i> , <i>P. falciparum</i> , <i>P. malariae (Malaria)</i> , <i>Entamoeba histolytica & Entamoeba</i> <i>coli (amoebiasis)</i> ,		
Route of entry, Life Cycles, Immunity, disease produced, diagnosis & prophylaxis of <i>Leishmania, Trypanosoma and Toxoplasma</i> . Fungal infections: description & classification of pathogenic fungi, Infection caused by dermatophytes (<i>Microsporum, Trichophyton & Epidermatophyton</i>)	20%	9
Definition, Causative agent, Source of infection, Epidemiology, Symptomatology & Diagnosis of Candidiasis, Aspergillosis and Histoplasmosis.		
Unit 5: Antimicrobial agents	20%	9
Theory: Antimicrobial agents: Histroy, Antibiotics, Antifungal and Antivirals (common drugs, their spectrum and mode of action).		
Methodologies for testing of antibacterial, antifungal, and antiviral drugs (in		
vivo and in vitro infectivity models), mechanism drug resistance. Preclinical		
development: Safety profile of drugs (Pyrogenecity, Toxicity -hepato, -		
nephro, -cardio and neurotoxicity), Toxicological evaluation of drug (LD50,		
Acute, subacute and chronic toxicity), Mutagenecity (Ames test,		
micronucleus test) and Carcinogenicity. Clinical studies: Phase I, phase II,		
phase III and phase IV of clinical trials –Objectives, Conduct of trials, Outcome of trials		

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practicalexercises are designed to understand the theory as taught in the classroom. Hands on in practicalsession.

	Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
be able to:	Il completion of the above course, students will derstand the basic principles of medical	Remember	Explain, Describe, Discuss, Recall, Locate
	and infectious disease.		
disease transm	an understanding of mechanisms of infectious ission, principles of aseptic practice, and the an body's normal microflora.		Apply, Practice, Interpret, Select, Correlate
pathogenic mi	vide the conceptual basis for understanding croorganisms and the mechanisms by which ase in the human body.	•	Compare, Classify, Select, Investigate
the use and inte infectious disea			Construct, Develop, Produce
CO5 To explai chemotherapy	n the methods of microorganisms control, e.g.	Understand	Explain, Describe, outline, Predict, Summarise
Learning Resources			
1.	Textbook & Reference Book		
	 Medical Microbiology; Jawetz, Melnick Hills Medical Bacteriology, Medical Mycolog Sinha, New Central Book Ajency (P) Ltd. Virology; Renato Dulbecco and Hard Lippincott Company, USA 5. An Introduction to viruses, S. B. Biswass Publishing House PVT LTD New Delhi. Principles of Therapeutics, Burn J. H., E Principles of Drug Action, The Basis of and Kalman S. M., Harper international edition Mannfred A. Holliger, (2008), Introduction to p 	gy and AIDS; N.C.Dey old S. Ginsberg, Fou and Amita Biswas. Fo Blackwell Scientific Pu Pharmacology, Goldst New York.	7, T.K. Dey and D. arth edition, J.B orth edition, Vikas ab. O. Ltd. Oxford. tein A., Aronow L.,

2.	7.	Journals & Periodicals
	8.	JBC,
	9.	Science,
	10.	Plos biology
	11.	Periodicals: current science
3	12.	Other Electronic resources: 1) MH Education 2) NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	30 marks	
Theory: End Semester Marks	50 marks	
Theory: Continuous		
Evaluation Component Marks	Attendance	05 marks
IVIALKS	MCQs	05 marks
	Skill enhancement activities / case study	05 marks
	Presentation/ miscellaneous activities	05 marks
	Total	20 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	5 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

	JRSE CODE ASIM302	2	EMEF	SE NAME SEMESTER RGING III OLOGIES			CR	
Teaching Scheme (Hours)						Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	s Lecture Practical Tutorial Total Cro				Total Credit
3	0	0	45	3 0 0 3				3

Course Prerequisites	Students should have basic knowledge about Microbiology					
Course Category	Core Professional.					
Course focus	Scientific Temperament & Employability					
Rationale	Broad-based in nature encompassing several new technologies that current experimental researchers are employing to probe complex system biology questions in life-sciences.					
Course Revision/ Approval	14/03/2020					
Date:						
Course Objectives (As per Blooms' Taxonomy)	 Remember Concepts of new technologies Apply understanding Experimental approches Analyses appreciate current-day research tool-kit. Create an understanding how interactions network develops Understand applications both scientific and industrial 					

Course Content (Theory)	Weightage	Contact hours
 Unit 1: Microscopy Theory: Optical microscopy methods Basic Microscopy: Light Microscopy: lenses and microscopes, resolution: Rayleigh's Approach,Darkfield;PhaseContrast;DifferentialInterferenceContrast;fluoresce ence and fluorescence microscopy: what is fluorescence, what makes a molecule fluorescent, fluorescence microscope; optical arrangement, light source; filter sets: excitation filter, dichroic mirror, and barrier, optical layout for image capture; CCD cameras; back illumination, binning; recording colour; three CCD elements with dichroic beams platters, boosting the signal. Advanced Microscopy: Confocal microscope: scanning optical microscope, confocal principle, resolution and point spread function, light source: gas lasers &solid-state, primary beam splitter; beam scanning, pinhole and signal channel configurations, detectors; pixels and voxels; contrast, spatial sampling: temporal sampling: signal-to noise ratio, multichannel images. nonlinear microscope; multiphoton microscopy; principles of two-photon fluorescence, advantages two-photon excitation, tandem scanning (spinning disk) microscopes, deconvolving confocal images; image processing, three-dimensional reconstruction; advanced fluorescence Resonant Energy Transfer (FRET), Fluorescence Correlation Spectroscopy (FCS), Evanescent Wave Microscopy; Near-Field and Evanescent Waves, Total Internal Reflection Microscopy; Near-Field Microscopy; 	20%	9
Resolution Summary, Super-Resolution Imaging with Stochastic Optical Reconstruction Microscopy (STORM) and Photoactivated Localization Microscopy (PALM) Unit 2: Mass spectroscopy Theory: Mass spectroscopy Ionization techniques; mass analysers/overview MS; FT-ICR and Orbitrap, fragmentation of peptides; proteomics, nano LC- MS; Phosphor proteomics; interaction proteomics, mass spectroscopy in structural biology; imaging mass spectrometry.	20%	9
 Unit 3: System & Structural Biology Theory: Systems biology High throughput screens in cellular systems, target identification, validation of experimental methods to generate the omics data, bioinformatics analyses, mathematical modelling and designing testable predictions. Structural biology X-ray diffraction methods, solution & solid-state NMR cryo-electron microscopy, small angle X-ray scattering, atomic force microscopy. 	20%	9

		1
Unit 4: CRISPR technology Theory: CRISPR-CAS History of its discovery, elucidation of the mechanism including introduction to all the molecular players, development of applications for in vivo genome engineering for genetic studies, promise of the technology as a next generation therapeutic method.	20%	9
Unit 5: NANOBODIES Theory: Introduction to nanobodies, combining nanobody with phage- display method for development of antibody against native proteins, nanobody as a tool for protein structure-function studies, use of nanobodies for molecular imaging, catabolic antibodies using nanobodies.	20%	9
Practicals: • Hand on use of ELISA • Demonstration of GC • Demonstration of HPLC • Hands on use of fluorescent microscope • Demonstration of AAS • Demonstration of RT-PCR • Demonstration of Fermentation		

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in the classroom. Hands on in practical session.

Course outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will		Explain, Describe,
be able to:		Discuss, Recall,
CO1 This course is broad-based in nature encompassing		Locate
several new technologies that current experimental	Remember	
researchers are employing to probe complex system biology		
questions in life-sciences.		
CO2 The objectives of this course are to teach basics of the	Apply	Apply, Practice,
new principles to students so as to appreciate current-day		Interpret, Select,
research tool-kit better.		Correlate
CO3Understanding the need for Technologies	Analyses and	Compare,
	Evaluation	Classify, Select,
		Investigate
CO4 Understanding the advanced technologies.	Create	Construct,
		Develop, Produce

Understand

arning R	Resources
1.	Textbook & Reference Books
1.	1. Campbell, I.D. (2012). Biophysical Techniques. Oxford: Oxford University Press.
	2. Serdyuk, I. N., Zaccai, N. R., & Zaccai, G. (2007). Methods in Molecular Biophysic
	Structure, Dynamics, Function. Cambridge: Cambridge University Press.
	3. Phillips, R., Kondev, J., & Theriot, J.(2009). Physical Biology of the Cell. New Yor
	Garland Science.
	4. Nelson, P.C., Radosavljević, M.,&Bromberg, S.(2004). Biological Physics: Energ
	Information, Life. New York: W.H.Freeman.
	5. Huang, B., Bates, M., & Zhuang, X. (2009). Super-Resolution Fluorescence
	Microscopy. Annual Review of Biochemistry, 78(1),993-1016.doi:10.1146/annure
	biochem.77.061906.092014.
	6. Mohanraju, P., Makarova, K. S., Zetsche, B., Zhang, F., Koonin, E. V., & Oost, J.
	(2016).Diverse Evolutionary Roots and Mechanistic Variations of the CRISPR-C
	Systems. Science, 353(6299). doi:10.1126/science.aad5147.
	7. Lander, E.(2016). The Heroes of CRISPR. Cell, 164(1-2), 18-28. doi:10.1016
	cell.2015.12.041.
	8. Ledford, H.(2016). The UnsungHeroes of CRISPR. Nature, 535(7612), 342-344.
	doi:10.1038/535342a.
	9. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., & Charpentier, E. (2012)
	A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacteri
	Immunity. Science, 337(6096), 816-821.doi:10.1126/science.1225829.
	10. Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hammers,
	Songa, E. B., Hammers, R. (1993). Naturally Occurring Antibodies Devoid of Lig
	Chains. Nature, 363(6428), 446-448.doi:10.1038/363446a0.
	11. Sidhu, S. S., & Koide, S. (2007). Phage Display for Engineering and Analysia
	Protein Interaction Interfaces. Current Opinion in Structural Biology, 17(4), 481-48
	doi:10.1016/j.sbi.2007.08.007.
	12. Steyaert, J., & Kobilka, B. K.(2011). Nanobody Stabilization of G Protein-Couple
	Receptor Conformational States. Current Opinionin Structural Biology, 21(4), 567-57
	doi:10.1016/j.sbi.2011.06.011.
	13. Vincke, C., & Muyldermans, S. (2012). Introduction to Heavy Chain Antibodies and
	Derived Nanobodies. Single Domain Antibodies, 15-26. doi:10.1007/978-1-61779-96
	6 2.
	14. Verheesen, P.,& Laeremans, T.(2012). Selection by Phage Display of Sing
	Domain Antibodies Specific to Antigens in their Native Conformation. Single Doma
	Antibodies, 81-104.doi:10.1007/978-1-61779-968-6 6.
	15. Li,J.,Xia,L.,Su,Y.,Liu,H.,Xia,X.,Lu,Q.Reheman,K.(2012).Molecular Imprint
	Enzyme Active Site by Camel Nanobodies. Journal of Biological Chemistry J. Bi
	Chem., 287(17), 13713-13721.doi:10.1074/jbc.m111.336370.
	16. Sohier, J., Laurent, C., Chevigné, A., Pardon, E., Srinivasan, V., Wernery, U.Galleni,
	(2013). Allosteric Inhibition of VIM Metallo- β -Lactamases by a Camelid Nanobod
	Biochemical Journal, 450(3), 477-486. doi:10.1042/bj20121305.
	17. Chakravarty, R., Goel, S., & Cai, W.(2014). Nanobody: The "Magic Bullet" f
	Molecular Imaging?Theranostics,4(4),386-398.doi:10.7150/thno.8006.
	protecular infaging: inclanosues,4(4),500-598.001.10./150/000.0000.

2. Journals & Periodicals

- JBC,
 Science,
 Plos biology
 Periodicals: current science
 Other Electronic resources: 1) MH Education 2) NPTEL 3

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	30 marks	
Fheory: End Semester Marks	50 marks	
Theory: Continuous		
Evaluation Component	Attendance	05 marks
Marks	MCQs	05 marks
	Skill enhancement activities / case study	05 marks
	Presentation/ miscellaneous activities	05 marks
	Total	20 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	5 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

COURSE CODE	
MSIM303	

COURSE NAME INDUSTRIAL & FOOD MICROBIOLOGY

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	s Lecture Practical Tutorial Total			Total Credit
3	2	0	45	3	2	0	5

Course Prerequisites	Students should have basic knowledge about Microbiology				
Course Category	Core Professional.				
Course focus	Scientific Temperament & Employability				
Rationale	The course will introduce Basic aspects and scope of food nicrobiology. Intrinsic and extrinsic factors that affect microbial growth in foods.				
Course Revision/ Approval	14/03/2020				
Date:					
Course Objectives	1. Remember: provide in-depth knowledge about food				
(As per Blooms' Taxonomy)	 microbiology Apply understanding Experimental approaches Analyses microbial production of industrial products Create an understanding how interactions network develops Understand applications both scientific and industrial 				

Course Content (Theory)	Weightage	Contact hours
Unit 1: The Trajectory of Food Microbiology		
1. Introduction to Food Microbiology - Part I: Bacteria	20%	9
2. Introduction to Food Microbiology - Part II: Yeast, Mold and Virus		
Unit 2: Microorganisms and Food Materials		
Microbial growth and its Quantification	20%	9
Factors affecting growth and survival of microorganisms in Foods		
Role of Predictive Microbiology		
Unit 3: Microbiology of Food Commodities		
Overview of Spoilage		
Microbial spoilage of Fruits and Fruit juices		
Microbial spoilage of Vegetables	20%	9
Microbial spoilage of Cereals and Bakery Foods		
Microbiology of Meat, Poultry, Sea foods		
Microbial spoilage of Canned Foods		

Unit	4: Microbiology of Food Preservation		
	Physical methods-Thermal Processing		
	Physical methods: Part II: Non-Thermal Processing		
	Chemical Methods	20%	9
	Natural Antimicrobial Compounds	_0,0	
•	Emergency Methods of Food Preservation		
	Combination Methods of Preservation		
	Biotechnology in Food Preservation.		
Unit	5: Microbial Process Strategies & Dairy Waste management		
1.	Single Cell Protein and Industrial Alcohol		
2.	Organic Food-Citric, lactic and Vinegar	••••	0
3.	Industrial Enzymes and Vitamin	20%	9
4.	Bacteriocins and Antibiotics		
5.	Fermented Foods		
6.	Treatment and Disposal of Waste Water and Effluents		

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in the classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to:	Remember	Explain, Describe, Discuss, Recall,
CO1 To provide in-depth knowledge to students on different aspects of microbial growth and associated spoilage in foods CO2 To Demonstrate students on principles, different preservation methods of food and mode of action of various preservation methods on microbes.		Locate Apply, Practice, Interpret, Select, Correlate
CO3 To Acquaint students with types of fermentation processes and microbial production of industrial products.	Analyses and Evaluation	Compare, Classify, Select, Investigate
CO4 To acquaint students with Diary aste and its management.	Create	Construct, Develop, Produce
CO5 To acquaint students with experimental strategies used in food Microbiology, processing and preservation.	Understand	Explain, Describe, outline, Predict, Summarise

1.	Textbook & Reference Books
	 Frazier, W.C. and Westhoff, D. C. 2004. Food Microbiology. 3rd McGraw Hill, New Delhi.
	 Jay, J. M. 1992. Modern Food Microbiology. 4th Van Nostrand Reinhold, New York, USA.
	3. Okafor, N. 2007. Modern Industrial Microbiology and Biotechnology. Enfield: Science Publ., USA.
	 Ray, B. 2004. Fundamental Food Microbiology 3rd, CRC Press, Washington D.C. USA.
	 Waites, M. J. 2001. Industrial Microbiology: An Introduction. Blackwell Science, London.
2.	Journals & Periodicals
	1. JBC,
	2. Science,
	3. Plos biology
	4. Periodicals: current science
3	Other Electronic resources: 1) MH Education 2) NPTEL

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	30 marks				
Theory: End Semester Marks	50 marks				
Theory: Continuous					
Evaluation Component Marks	Attendance	05 marks			
11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	MCQs	05 marks			
	Skill enhancement activities / case study	05 marks			
	Presentation/ miscellaneous activities	05 marks			
	Total	20 Marks			
Practical Marks					
	Attendance	05 marks			
	Practical Exam	30 marks			
	Viva	10 marks			
	Journal	5 marks			
	Total	50 Marks			

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of POs and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

MSIM304 ENVIRON		E NAME MENTAL IOLOGY		SEMESTI	ER		
Lecture	Teaching Scheme (Hours)			Lecture	Teachir Practical	ng Credit Tutorial	Total Credit
2	0	0	30	2	0	0	2

Course Prerequisites	Students should have basic knowledge about Microbiology		
Course Category	Core Professional.		
Course focus	Scientific Temperament & Employability		
Rationale	The course will introduce major groups of microorganisms- tools in biotechnology and their most important environmental applications.		
Course Revision/ Approval Date:	14/03/2020		
Course Objectives	1. Remember: e nvironmental applications of biotechnology		
(As per Blooms'	2. Apply understanding Experimental approaches		
Taxonomy)	3. Analyses environmental problems		
	4. Create an understanding how interactions network develops		
	5. Understand applications both scientific and industrial		

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to environment Pollution and its control; pollution indicators; waste management: domestic, industrial, solid and hazardous wastes; strain improvement; Biodiversity and its conservation; Role of microorganisms in geochemical cycles; microbial energy metabolism, microbial growth kinetics and elementary chemostat theory, relevant microbiological processes, microbial ecology	20%	9

Unit 2: Bioremediation:		
Bioremediation: Fundamentals, methods and strategies of application (biostimulation, bioaugmentation) – examples, bioremediation of metals (Cr, As, Se, Hg), radionuclides (U, Te), organic pollutants (PAHs, PCBs, Pesticides, TNT etc.), technological aspects of bioremediation (in situ, ex situ).	20%	9
Unit 3: Role of microorganisms in bioremediation: Application of bacteria and fungi in bioremediation: White rot fungi vs		
specialized degrading bacteria: examples, uses and advantages vs disadvantages; Phytoremediation: Fundamentals and description of major methods of application (phytoaccumulation, phytovolatilization, rhizofiltration Phyto stabilization)	20%	9
Unit 4: Biotechnology and agriculture:		
Bioinsecticides: Bacillus thuringiensis, Baculoviruses, uses, genetic modifications and aspects of safety in their use; Biofungicides: Description of mode of actions and mechanisms (e.g. Trichoderma, Pseudomonas fluorescens); Biofertilizers: Symbiotic systems between plants – microorganisms (nitrogen fixing symbiosis, mycorrhiza fungi symbiosis), Plant growth promoting rhizobacteria (PGPR) – uses, practical aspects and problems in application.	20%	9
Unit 5: Biofuels : Environmental Biotechnology and biofuels: biogas; bioethanol; biodiesel; biohydrogen; Description of the industrial processes		
involved, microorganisms and biotechnological interventions for optimization of production; Microbiologically enhanced oil recovery (MEOR); Bioleaching of metals; Production of bioplastics; Production of biosurfactants: bioemulsifiers; Paper production: use of xylanases and white rot fungi.	20%	9

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practicalexercises are designed to understand the theory as taught in the classroom. Hands on in practicalsession.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain	
After successful completion of the above course, students will be able to:		Explain, Describe,	
CO1 This course aims to introduce fundamentals of Environmental Biotechnology.	Remember	Discuss, Recall, Locate	
CO2 The course will introduce major groups of microorganisms- tools in biotechnology and their most important environmental applications.	Apply	Apply, Practice, Interpret, Select, Correlate	
CO3 The environmental applications of biotechnology will be presented in detail and will be supported by examples from the national and international literature	Analyses and Evaluation	Compare, Classify, Select, Investigate	
CO4 To acquire an awareness of and sensitivity to the total environment and its allied problems.	Create	Construct, Develop, Produce	
CO5 To understand how biotechnology can useful to solve environmental problems	Understand	Explain, Describe, outline, Predict, Summarise	
Learning Resources			
1. Textbook & Reference Books			
 1 G.M. Evans and J.C. Furlong (2003), Environmental Biotechnology: Theory and Applications, Wiley Publishers. B. Ritmann and P.L. McCarty, (2000), Environmental Biotechnology: Principle & Applications, 2st Ed., McGraw Hill Science. P. K. Mohapatra (2006) Textbook of Environmental Biotechnology, IK International Indu Shekhar Thakur (2011) Environmental Biotechnology: Basic Concepts and Applications, I K International Publishing House Hans-Joachim Jördening, Josef Winter (2005) Environmental Biotechnology Concept and applications. Wiley VCH A. K. Chatterji (2010) Introduction to Environmental Biotechnology PHI Learning Limited New Delhi T. Srinivas (2008) Environmental Biotechnology Science K. Wang, Volodymyr Ivanov, Joo-Hwa Tay, Yung-Tse Hung (2010) Environmental Biotechnology, Humana Press S. K. Agarwal (2005) Advanced Environmental Biotechnology APH Publishing Corporation New Delhi 			

	Journals & Periodicals1.JBC,2.Science,3.Plos biology4.Periodicals: current science
3	Other Electronic resources: 1) MH Education 2) NPTEL

Evaluation Scheme	Total Marks			
Theory: Mid semester Marks	30 marks			
Theory: End Semester Marks	50 marks			
Theory: Continuous				
Evaluation Component Marks	Attendance	05 marks		
	MCQs	05 marks		
	Skill enhancement activities / case study	05 marks		
	Presentation/ miscellaneous activities	05 marks		
	Total	20 Marks		
Practical Marks				
	Attendance	05 marks		
	Practical Exam	30 marks		
	Viva	10 marks		
	Journal	5 marks		
	Total	50 Marks		

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
СО						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of PO and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

	JRSE CODE MSIM305	2	MICROBIAL I	E NAME PHYSIOLO ABOLISM	LOGY III			CR
Teaching Scheme (Hours)						Teaching	g Credit	
Lecture	Practical	Tutoria	I Total Hours	Lecture	Pr	actical	Tutorial	Total Credit
3	0	0	45	3	0		0	3

Course Prerequisites	Students should have basic knowledge about Microbiology					
Course Category	Core Professional.					
Course focus	Scientific Temperament & Employability					
Rationale	The course will provide information on sources of energy and its utilization by microorganisms.					
Course Revision/ Approval Date:	14/03/2020					
Course Objectives	1. Remember: To understand microbial metabolism mechanism					
(As per Blooms' Taxonomy)	 Apply understanding Experimental approaches Analyses microbial production of industrial products Create an understanding how interactions network develops Understand applications both scientific and industrial 					

Course Content (Theory)	Weightage	Contact hours
Unit 1: Microbial growth, measurement of microbial growth and effect of temperature on growth Definitions of growth and generation time measurement of microbial growth, and specific growth rate, Batch an Continuous culture, Phases and types of growth curve and its industria application, Microbial growth in response to temperature, pH, solute an water activity, oxygen, pressure and radiation. Autotrophy - Concept, factor for, types of autotrophs, mechanisms	20%	9

Unit 2: Microbial transport and nutrition Classification of bacteria based on nutrients, Membranes of microorganisms Ion channels, Passive and facilitated diffusion, Primary and secondary activ transport, concept of uniport, symport and antiport, Group translocation an Iron uptake, Photosynthetic pigments and apparatus in bacteria, Mode o nutrition in purple sulphur bacteria, non-sulphur bacteria and green sulphu bacteria, Utilization of light energy by halobacterium. Bio-signalling Molecular mechanisms, signalling in bacteria- The two-component signallin mechanism in bacterial chemotaxis. Microbial stress responses.	20%	9
Unit 3: Photosynthesis and metabolism Photosynthesis: Oxygenic and an oxygenic microorganisms, structure of chloroplast, light reaction, photolysi of water and photophosphorylation, C3 and C4 pathway of carbon fixation Nutritional classification of microorganisms, Energy generation i cyanobacteria, green bacteria, purple sulphur bacteria and chemolithotrops Lipid biosynthesis: Biosynthesis of lipids and fatty acids, triglycerol an phospholipids and their regulation. Lipid Metabolism: Degradation of Lipids oxidation of unsaturated, saturated, even and odd chain fatty acids, keton bodies. Metabolism of nitrogenous compounds: Transamination, oxidativ deamination, decarboxylation, urea cycle. General biosynthetic pathways o amino acids, biosynthesis of purines and pyrimidines and their regulation	20%	9
Unit 4: Microbial energetics and nitrogen fixation Concept of aerobic respiration, anaerobic respiration and fermentation Central metabolic pathways: EMP pathway, ED pathway, PP pathway, an TCA cycle. Anaplerotic reactions, gluconeogenesis, glyoxylate cycle Mitochondrial and bacterial electron transport. Oxidation-reduction potentia and energetic of electron transport. Fermentations: alcohol fermentation Pasteur effect, lactate and butyrate fermentation, Fermentation balances branched versus linear fermentation pathways. Nitrogen Fixation Physiology of nitrogen cycle. Assimilatory and dissimilatory nitrat reduction, biological nitrogen fixation. Nitrogen fixers and mechanism o nitrogen fixation.	20%	9
Unit 5: Secondary Metabolism Fungal and bacterial secondary metabolism: Secondary metabolites an regulation of secondary metabolism. Antibiotics: Definition, Discovery classification, structure and mode of action. Biosynthesis of secondar metabolites -beta-lactum antibiotics, patulin, Aflatoxin, ergot alkaloids Fungal toxins: Types of toxins, aromatic and phenolic toxins, terpenoi toxins, polysaccharides and glycoproteins. Bacterial toxins: Exo an endotoxins, enterotoxins. Pigments: Melanin, carotenoids. Fungal hormones Sirenin (Allomyces) Sterols (Achlya). Trisporic acid (Ascomycetes), peptid hormones (Basidiomycetes). Bioluminescence in microorganisms Mechanism and significance.	20%	9

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in the classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will		Explain, Describe,
be able to:		Discuss, Recall,
CO1 To get the basic idea of the conditions affecting microbial growth.	Remember	Locate
CO2To understand the mechanism of transport through the microbial cell membrane	Apply	Apply, Practice, Interpret, Select, Correlate
CO3To understand microbial metabolism mechaism	Analyses and Evaluation	Compare, Classify, Select, Investigate
CO4 To gain knowledge of microbial energetics and nitrogen fixation.	Create	Construct, Develop, Produce
CO5 To know microbial secondary metabolism and products	Understand	Explain, Describe, outline, Predict, Summarise
Learning Resources	L	1

1.	Textbook & Reference Books
	• Kim B.H. and Gadd G.M. 2008. Bacterial physiology and metabolism.
	Cambridge University Press, Cambridge.
	• Gilbert H.F. 2000. Basic concepts in biochemistry: A student's survival guide.
	Second Edition. Mc-Graw-Hill Companies, health professions Division, New York.
	• Madigan M.T., Martinko J.M., Stahl D.A. and Calrk D.P. 2012. Brock Biology
	of Microorganisms. 13th ed. Pearson Education Inc.
	• Gottschalk G. (1986). <i>Bacterial Metabolism</i> . 2nd edition. Springer Verlag.
	Lehninger A. (1982). Biochemistry. Worth Publ.
2.	Journals & Periodicals
	1. JBC, Annals of Microbiology
	2. Science,
	3. Plos biology
	4. Periodicals: current science
3	Other Electronic resources: 1) MH Education 2) NPTEL

Evaluation Scheme	Total Marks					
Theory: Mid semester Marks	30 marks					
Theory: End Semester Marks	50 marks					
Theory: Continuous						
Evaluation Component	Attendance	05 marks				
Marks	MCQs	05 marks				
	Skill enhancement activities / case study	05 marks				
	Presentation/ miscellaneous activities	05 marks				
	Total	20 Marks				
Practical Marks						
	Attendance	05 marks				
	Practical Exam	30 marks				
	Viva	10 marks				
	Journal	5 marks				
	Total	50 Marks				

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO	1					
CO1	2	-	2	1	2	-
CO2	1	2	2	2	-	-
CO3	1	-	-	3	2	1
CO4	2	3	2	-	1	2
CO5	2	1	2	1	-	2

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	1	-	2	2	1
CO2	-	1	1	2	-	1
CO3	2	-	-	1	2	1
CO4	2	1	2	2	2	2
CO5	-	1	-	2	-	2

MSIM306 AGI MICRO PLAN			AGRICU MICROBIO PLANT-PA	E NAME LTURAL LOGY ANI ATHOGEN .CTIONS	TURAL III OGY AND THOGEN TIONS			ER
	Teaching Sch	eme (Hours	s)			Teachin	g Credit	
Lecture	Practical	Tutorial	Total Hours	Lecture	Pr	actical	Tutorial	Total Credit
3	2	0	45	3	2		0	3

Course Prerequisites	Students should have basic knowledge about Microbiology					
Course Category	Core Professional.					
Course focus	Scientific Temperament & Employability					
Rationale	The course will introduce Plant-pathogen interaction mechanism					
	process involving pathogen- and plant-derived molecules.					
Course Revision/ Approval	14/03/2020					
Date:						
Course Objectives	Remember: To understand the epidemiology of plant pathogen					
	interaction					
(As per Blooms' Taxonomy)	Apply understanding Experimental approaches					
	Analyses To introduce Agricultural microbiology and its scope					
	Create an understanding how interactions network develops					
	Understand applications both scientific and industrial					
	onderstand approactors soon scientific and industrial					

Course Content (Theory)	Weightage	Contact hours
Unit 1: Introduction to Agriculture Microbiology Concepts and scope of agricultural microbiology, importance of microorganisms in agriculture, influence of microorganisms in plant growth, modern concepts of microbial inoculants in agriculture. Interaction of soil microorganisms with plants: Rhizosphere and phylloplane microorganisms. Mass culturing and quality control of microbial inoculants-mother culture, shake culture and brief account of large-scale production of biofertilizers, types of carrier materials, packing, storage, bench life and transportation of biofertilizers. ISI standards and quality testing at different levels. Methods of biofertilizer application- seed inoculation, soil amendment and nursery application.	20%	9

Unit 2: Microbes & Bio-fertilizers Symbiotic and non-symbiotic nitrogen fixation, mechanisms of nitrogen fixation and importance. Brief account of production and application of Rhizobium inoculant; strain selection and mass culturing. Brief account of production and utility of Azotobacter, Az spirillum, cyanobacteria, Azolla, Frankia. Salient features and significance of strains and application of these organisms. Phosphate-solubilizing microorganisms-importance, culturing and applications of these microorganisms in agriculture. Vermi composting, Mycorrhizae: types, Mass production and application of mycorrhizae. Mushroom cultivation.	20%	9
Unit 3: Phytopathology Introduction and historical milestones, significance of plant diseases, types of plant diseases, basic procedure of plant disease diagnosis, parasitism, pathogenicity and plant disease development, disease cycle, infection cycle and plant disease triangle Levels of plant- pathogen interaction: Perpetration, host recognition, role of host exudates, entry by plant pathogens through natural openings and wounds, direct penetration, process of pathogenesis, infection and establishment of pathogens in the host tissues.	20%	9
Unit 4: Pathogenesis & Défense Mechanism in Plants Role of pathogen enzymes in pathogenesis- production of different enzymes and action of pathogen enzymes on host tissues and significance of these enzymes in disease development. Role of phytotoxins in plant pathogenesis-types of toxins produced by plant pathogens, effect of toxins on disease development. Role of plant growth regulators in plant pathogenesis. Defense mechanisms in plants: Structural and biochemical defense mechanisms role of elicitors, receptors and suppressors in disease development, molecular mechanisms in expression of plant disease resistance. Epidemiology of plant diseases: Effect of environmental factors on disease development; Dissemination of plant pathogens; Disease forecasting and its Significance, Seed Pathology: Importance of seed-borne diseases and seed health testing methods.	20%	9

Unit 5: Plant Disease Management Cultural methods-exclusion eradication, crop rotation and sanitation. Inspection and certification. quarantine regulations. Physical methods-soil solarization, hot water treatment, mulching and other methods. Chemical control of plant diseasespreparation and use of different chemicals, types of chemicals used in plant disease management; application of chemicals to soil, seeds, plant and store house problems and remedies for fungicidal resistance. Biological control of plant disease selection, testing and use of antagonistic microorganisms and their metabolites, application methodology and significance. Breeding for 20% 9 disease resistance, systemic acquired resistance; protoplast, cell, tissue culture and somaclonal variation for disease resistance, biotechnological approaches in obtaining disease resistance plants, induced resistance. transgenic plants for plant disease management. Integrated disease management practices. Brief account of some important plant diseases (with one example for each group with description of pathogen, symptoms and management)- rots, damping-offs, downy mildews, white rust, powdery mildews, smuts, rusts, wilts, leaf spots, anthracnose, galls, ergots, bacterial diseases, viral diseases, phytoplasmal diseases, nematode diseases, protozoal diseases, viroid diseases, non-parasitic diseases and post-harvest diseases

Instructional Method and Pedagogy:

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in the classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1 To introduce Agricultural microbiology and its scope. CO2 To demonstrate the use of non-pathogenic/symbiotic microbes as biofertilizers	Remember Apply	Explain, Describe, Discuss, Recall, Locate Apply, Practice, Interpret, Select, Correlate
CO3 To understand the epidemiology of plant pathogen interaction	Analyses and Evaluation	Compare, Classify, Select, Investigate
CO4 To get insights of plant pathogen and defence mechanism in plants	Create	Construct, Develop, Produce
CO5 To get acquainted with management of plant diseases	Understand	Explain, Describe, outline, Predict, Summarise
Learning Resources		

1.	Textbook & Reference Books
	 Agrios, G. 2005. Plant Pathology, 5th edition, Reed Elsevier India Private Limited, New Delhi, India Limited, New Delhi, India. Mehrotra, R.S.1980. Plant Pathology, Tata McGraw-Hill publishing Company Limited, New Delhi. Purohit, S.S. 2003. Agricultural Biotechnology, 2nd edition, Agrobios Publisher, Jodhpur, India. Rangaswami, G and Bagyarai, D.J.2005. Agricultural Microbiology, 2nd edition, Prentice-Hall of India Private Limited, New Delhi. Agarwal, V.K and Sinclair, J.B. 1987. Principles of Seed Pathology, CBS Publishers, Delhi. Srivastava, H.N. 2001. Plant Pathology, Pradeep Publications, Jalandhar. Dhingra, O.D and Sinclair, J.B. 1985. Basic Plant Pathology Methods, CBS Publishers, Delhi. Ayres, P.G. 1992. Pests and Pathogens (Plant Responses to Foliar Attack), Bioscientific Publishers. Carlile, M.G., Watkinson, S.C and Gooday, G.W. 1994. The Fungi, Academic Press, UK. Gow, N.A.R and Gadd, G.M. 1996. The growing fungus, Chapman and Hall Publishers, London. Rao, N.S.S. 1993. Biofertilizers In Agriculture and Forestry, 3rd edition, Oxford & IBH Publishing Pvt. Ltd, New Delhi.
2.	 Journals & Periodicals Indian Journal of Applied Microbiology Plant Pathology Annual Review of Phytopathology Plant Disease journal Journal of Plant Diseases and Protection Hamamouch et al. 2013. The interaction of the novel 30C02 cyst nematode effector protein with a plant β-1,3-endoglucanase may suppress host defence to promote parasitism. J Exp Bot 63:3683-3696 Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture deJonge 2011. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr Opin Plant Biol 14: 1–7 Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective.
3	Other Electronic resources: 1) MH Education 2) NPTEL

Evaluation Scheme	Total Marks	
Theory: Mid semester Marks	30 marks	
Theory: End Semester Marks	50 marks	
Theory: Continuous Evaluation Component Marks	Attendance	05 marks
IVIALKS	MCQs	05 marks
	Skill enhancement activities / case study	05 marks
	Presentation/ miscellaneous activities	05 marks
	Total	20 Marks
Practical Marks		
	Attendance	05 marks
	Practical Exam	30 marks
	Viva	10 marks
	Journal	5 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	2	1	1	-
CO2	1	3	2	2	-	-
CO3	1	-	-	1	2	1
CO4	2	3	2	-	2	2
CO5	2	1	-	1	-	2

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	2	-	2	2	1
CO2	-	1	1	2	-	-
CO3	2	-	-	1	2	1
CO4	2	1	2	3	2	2
CO5	-	1	-	2	-	3

COURSE NAME BIOENTREPRENEURSHIP

Teaching Scheme (Hours)				Teaching Credit			
Lecture	Practical	Tutorial	Total Hours	Lecture	Practical	Tutorial	Total Credit
4	4	0	8	4	2	0	6

Course Pre-requisites	Students should contain basic knowledge about entrepreneurship.
Course Category	Core
Course focus	Employability
Rationale	Bioentrepreneurship is at the intersection of science and business. This course aims to bridge the gap between scientific knowledge and commercial applications, equipping students with the skills to translate innovative research and discoveries into successful biotech ventures.
Course Revision/ Approval Date:	14th March 2019
Course Objectives	
(As per Blooms' Taxonomy)	 To get knowledge about concepts of entrepreneurship To gain knowledge on identifying a winning business opportunity To apply their knowledge on gathering funds and launching a busi To grow and nurture the organization and harvest the rewards. To gain knowledge on for technology management and transfer

Course Content (Theory)	Weightage	Contact hours
Unit 1: Theory: Innovation and entrepreneurship in bio-business Introduction and scope in Bio-entrepreneurship, Types of bio-industries and competitive dynamics between the sub-industries of the bio-sector (e.g. pharmaceuticals vs. Industrial biotech), Strategy and operations of bio-sector firms: Factors shaping opportunities for innovation and entrepreneurship in bio-sectors, and the business implications of those opportunities, Alternatives faced by emerging bio-firms and the relevant tools for strategic decision	20%	06
Unit 2: Theory: Bio markets - business strategy and marketing Negotiating road from lab to the market (strategies and processes of negotiation with financiers, government and regulatory authorities), Pricing strategy, Challenges in marketing in bio business (market conditions & segments; developing distribution channels, the nature, analysis and management of customer needs), Basic contract principles, different types of agreement and contract terms typically found in joint venture and development agreements, Dispute resolution skills.	20%	06
Unit 3: Theory: Finance and accounting: Business plan preparation including statutory and legal requirements, Business feasibility study,financial management issues of procurement capital and management costs, Collaborations & partnership, Information technology.	20%	06
Unit 4: Theory: Technology management: Technology – assessment, development & upgradation, Managing technology transfer, Quality control & transfer of foreign technologies, Knowledge centers and Technology transfer agencies	20%	06
Unit 5: Theory: Entrepreneurship Development programs: Entrepreneurship development programs of public and private agencies (MSME, DBT,BIRAC, Make In India), strategic dimensions of patenting & commercialization strategies. Understanding of regulatory compliances and procedures (CDSCO, NBA, GCP, GLA, GMP)	20%	06

Audio-Visual Lectures, Quizzes, Debates, Project works, Case studies, and Assignments Practical exercises are designed to understand the theory as taught in classroom. Hands on in practical session.

Course Outcomes:	Blooms' Taxonomy Domain	Blooms' Taxonomy Sub Domain
After successful completion of the above course, students will be able to: CO1 Gain entrepreneurial skills, understand the various operations involved in venture creation	Understand, Remember& apply	Explain, Describe, Discuss, Recall, Locate
CO2 Identify scope for entrepreneurship in biosciences	Apply	Apply, Practice, Interpret, Select, Correlate
CO3 Utilize the schemes promoted through knowledge centres and various agencies	Evaoluate	Compare, Classify, Select, Investigate
CO4 Build up a strong network within the industry.	Apply	Construct, Develop, Produce
CO5 Develop and refine strategy in today's fast-changing, dynamic markets	Understand, Remember& apply	Explain, Describe, outline, Predict, Summarize

Learning Re	sources
1	 Textbook: 1. Adams, D.J., & Sparrow, J.C. (2008). Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences. Bloxham: Scion.
2	 Reference books : 2. Shimasaki, C. D.(2014). Biotechnology Entrepreneurship: Starting, Managing, and Leading Biotech Companies. Amsterdam:Elsevier. AcademicPress is an imprint of Elsevier. 30 3. Onetti, A., & Zucchella, A. Business Modeling for Life Science and Biotech Companies: Creating Value and Competitive Advantage with the Milestone Bridge. Routledge. 4. Jordan, J. F.(2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press. 5. Desai, V.(2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub.House
3	Journal : Bioentrepreneur-Nature, Journal of Bioentrepreneurship
5	Periodicals: Harward Buisness Review, Entrepreneur
6	Other Electronic resources: 1. https://online.stanford.edu/courses/xmse100-introduction-innovation-and- entrepreneurship 2. https://ocw.mit.edu/courses/entrepreneurship/

Evaluation Scheme	Total Marks				
Theory: Mid semester Marks	20 marks				
Theory: End Semester Marks	40 marks				
Theory: Continuous Evaluation Component Marks	Attendance MCQs	05 marks 10 marks			
	Open Book Assignment Article Review	15 marks 10 marks			
	Total	40 Marks			

Practical Marks		
	Attendance	05 marks
	Practical Exam	20 marks
	Viva	10 marks
	Journal	10 marks
	Discipline	05 marks
	Total	50 Marks

РО	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO						
CO1	1	-	-	-	2	-
CO2	I	I	I	I	I	-
CO3	-	-	-	-	-	1
CO4	-	3	-	-	-	2
CO5	-	-	1	-	1	2

1: Slight (low); 2: Moderate (Medium); 3: Substantial (High); 0 None

Mapping of PO and COs

РО	PO1	PO2	PO3	PO4	PO5	PO6
CO						
CO1	3	1	-	1	2	-
CO2	1	-	-	-	2	-
CO3	-	-	-	-	-	-
CO4	-		-	2	-	-
CO5	-	1	-	1	-	1